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Abstract 

Digital twins in healthcare offer an innovative approach to precision diagnosis, 
prognosis, and treatment. SynTwin, a novel computational methodology to gener-
ate digital twins using synthetic data and network science, has previously shown 
promise for improving prediction of breast cancer mortality. In this study, we validate 
SynTwin using population-level data for different cancer types from the Surveillance, 
Epidemiology, and End Results (SEER) program from the National Cancer Institute 
(USA). We assess its predictive accuracy across cancer types of varying sample sizes 
(n = 1,000 to 30,000 records), mortality rates (35% to 60%), and study designs, revealing 
insights into the strengths and limitations of digital twins derived from synthetic data 
in mortality prediction. We also evaluate the effect of sample size (n = 1,000 to 70,000 
records) on predictive accuracy for selected cancers (non-Hodgkin lymphoma, blad-
der, and colorectal cancers). Our results indicate that for larger datasets (n > 10,000) 
including digital twins in the nearest network neighbor prediction model signifi-
cantly improves the performance compared to using real patients alone. Specifically, 
AUROCs ranged from 0.828 to 0.884 for cancers such as cervix uteri and ovarian cancer 
with digital twins, compared to 0.720 to 0.858 when using real patient data. Similarly, 
among the selected three cancers, AUROCs using digital twins exceeded AUROCs 
using real patients alone by at least 0.06 with narrowing variance in performance 
as the sample size increased. These results highlight the benefit of network-based 
digital twins, while emphasizing the importance of considering effective sample size 
when developing predictive models like SynTwin.
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 Introduction
Digital twins represent an innovative approach to healthcare, encompassing manage-
ment and delivery, disease treatment and prevention, and health well-being mainte-
nance, ultimately enhancing human life [8]. This concept is particularly appealing for 
precision medicine, as it enables the creation of virtual representations of patients 
for personalized diagnosis, prognosis, and treatment. Notable examples include 
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MRI-based digital models predicting treatment responses in triple-negative breast 
cancer [16], virtual clinical trials identifying patients who may benefit from new treat-
ments [11], personalized atrial digital twins predicting iatrogenic scar-related atrial 
tachycardia in patients with persistent atrial fibrillation [13], and patient-physician 
digital twin dyads optimizing chemotherapy and radiation regimens in head and neck 
cancer patients [15].

A novel approach, SynTwin, combines synthetic patient data with network science 
to create digital twins for precision medicine [9]. The SynTwin methodology lever-
ages patient similarity networks to enhance the prediction of clinical endpoints. First, 
a network is constructed where patients are nodes with edges based on feature dis-
tances, defining patient communities. Synthetic patients are then generated to model 
real-world correlations in the data, and digital twins are selected from this synthetic 
population to predict mortality in real patients within the patient communities. 
Applied to a large cancer registry dataset (n = 87,674) from the SEER program, the 
SynTwin method significantly outperformed mortality predictions for breast cancer, 
with digital twins providing better accuracy than using real data alone. These findings 
suggest that a network-based digital twin strategy incorporating synthetic patients 
could improve precision medicine efforts.

Despite the promising potential of SynTwin, two critical challenges remain unre-
solved and require further investigation. The first challenge is reproducibility. 
Research indicates that over 70% of scientists have attempted and failed to repro-
duce another researcher’s experiments, and more than half have failed to reproduce 
their own experiments, highlighting a significant reproducibility crisis in scientific 
research [2]. The second challenge is determining the effective sample size. In medi-
cal research, an adequate sample size is crucial to control the risk of false-negative 
findings (Type II errors) and to ensure precise estimates of experimental outcomes 
[3]. Studies with small sample sizes tend to have wide confidence intervals, whereas 
larger samples can provide more precise estimates [7]. Given that extracting, clean-
ing, and curating data is often costly and time-consuming [1], determining the mini-
mum effective sample size for an algorithm can lead to more efficient use of resources 
in medical research.

In this study, we further explored the contribution of digital twin strategies in medi-
cine by evaluating the SynTwin approach in two specific scenarios: 1) assessing whether 
the performance of SynTwin in predicting breast cancer mortality can be reproduced for 
cancers with different mortality rates, and 2) evaluating the effect of varying sample sizes 
on prediction performance.

We applied the SynTwin approach to predicting mortality in population-based cancer 
registries from the Surveillance, Epidemiology, and End Results (SEER) program from 
the National Cancer Institute (USA). Seven cancers were selected, with sample sizes 
ranging from n = 1,000 to 30,000, to assess whether prior results with SynTwin translated 
to other cancer type. Our results show that for sample sizes exceeding n = 10,000, mor-
tality predictions using digital twins were significantly more accurate than those based 
solely on real data across various cancer types. These findings indicate that the Syn-
Twin approach is effective in multiple cancer domains, regardless of mortality rates, and 
achieves optimal performance with a proper size of samples being used for prediction.
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 Methods
The study employed the SynTwin algorithm [9] in two experiments. In the first experi-
ment, the algorithm was applied to a dataset with sample sizes ranging from n = 1,000 to 
30,000 records, with seven cancers: ovary, cervix uteri, small intestine, hepatic flexure, 
nasopharynx, oropharynx, and other urinary organs. In the second experiment, SynTwin 
was used to analyze datasets from three cancers: colorectal, non-Hodgkin lymphoma, 
and bladder, across varying sample sizes from n = 1,000 to 70,000 for each cancer type. 
This section provides the specifics of the data used and the experimental setup employed 
to derive the results.

 Dataset

The Surveillance, Epidemiology, and End Results (SEER) database, administered by the 
National Cancer Institute (NCI), collects cancer incidence data from population-based 
cancer registries in the United States. For our study, we utilized the SEER*Stat Version 
8.4.1 software to access the SEER Research Data: Incidence—SEER Research Data, 17 
Registries, Nov 2022 Sub (2000–2020)—Linked To County Attributes—Time Dependent 
(1990–2021) Income/Rurality, 1969–2021 Counties. We applied specific filter criteria to 
extract relevant patient data,

{Site and Morphology.Site recode ICD-O-3/WHO 2008} = ’All Sites’
AND {Race, Sex, Year Dx.Year of diagnosis} = ’2010’,’2011’,’2012’,’2013’,’2014’,’2015’
AND ({Cause of Death (COD) and Follow-up.Vital status recode (study cutoff 

used)} = ’Alive’
OR ({Cause of Death (COD) and Follow-up.Vital status recode (study cutoff 

used)} = ’Dead’
AND {Cause of Death (COD) and Follow-up.SEER cause-specific death classifica-

tion} = ’Dead (attributable to this cancer dx)’))
Our filtering yielded a dataset of 2,044,665 unique cases across 80 different cancer 

sites. This range includes the largest sample size, with 318,134 unique cases for breast 
cancer, and the smallest sample size, with only 122 unique cases for pleural cancer. 
The previous study focused solely on the largest sample size: breast cancer. To ensure 
a balanced representation for predictive modeling, they employed a stratified sampling 
approach based on vital status. In contrast, our study utilized a criterion based on sam-
ple size, ranging from n = 1,000 to 30,000 records, with a deceased percentage between 
approximately 35% and 60%. This criterion was designed to ensure a diverse representa-
tion across different sample sizes and a balanced distribution of deceased cases. Spe-
cifically, we included seven distinct cancers: ovary (n = 30,699), cervix uteri (n = 17,855), 
small intestine (n = 9,942), hepatic flexure (n = 5,204), nasopharynx (n = 2,990), oro-
pharynx (n = 2,050), and other urinary organs (n = 1,308). Additionally, to compare the 
effects of different sample sizes within the same cancer type using SynTwin, we selected 
three distinct cancers: colorectal (n = 169,064), non-Hodgkin lymphoma (n = 81,161), 
and bladder (n = 72,928), each with deceased percentage between 30 and 50%. These 
cancer types were chosen from the 12 most common cancers, each with more than 
70,000 cases, based on data from the SEER cancer statistics: common cancer sites [10]. 
We then performed stratified sampling with varying sample sizes of n = 1,000, 5,000, 
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10,000, 20,000, 50,000, and 70,000 to assess the performance of the model across dif-
ferent dataset sizes. We partitioned each sample into two sets: a training dataset com-
prising approximately two-thirds of the sample, and a validation dataset comprising the 
remaining one-third. The training data was used to generate the digital twins, while the 
validation dataset was reserved for making predictions on real patient data by construct-
ing the network and communities. The data processing steps are outlined by the flow-
chart in Fig. 1.

The features we included are age, year of diagnosis, sex, grade, sequence number, com-
bined summary stage, race, ICDO3, laterality, primary site, diagnostic confirmation, and 
ICCC site. These features are common across different types of cancers, which allows 
for a standardized approach in cancer research. We utilized the binary outcome of vital 
status (alive or dead) as a prediction variable. To comply with previous studies, these fea-
tures have been widely accepted as cancer-related and are essential for comparing and 
analyzing various cancer types consistently. Based on this data selection and processing, 
we constructed a retrospective cohort study to evaluate predictive performance across 
various cancer types and sample sizes.

Study design

 The syntwin algorithm

The SynTwin algorithm [9] facilitates the creation of digital twins through generating 
the synthetic data and constructing of a community network structure to predict patient 
outcomes. Initially, Gower’s distances [6] are computed between features. Gower’s dis-
tance is a similarity measure that effectively handles both categorical and continuous 
variables by calculating separate distances for each feature type and then averaging these 
to obtain an overall distance score. This makes Gower’s distance particularly robust for 
datasets with diverse feature types, as demonstrated in our prior studies. Subsequently, 
a graph network is established, where each data point represents a node, and distances 
serve as weights. Edge connections are filtered by determining the inflection point of a 
sigmoidal curve fitted to the relationship between distance thresholds and the number 
of connections.

Fig. 1  Flowchart for data processing and analysis
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In the third phase, SynTwin employs the multilevel algorithm [4] to detect large com-
munities, adjusting resolution parameter settings to maximize the number of communi-
ties containing at least 10 nodes. This threshold was selected to balance granularity and 
statistical stability: higher resolution values generally yield more, smaller communities, 
while lower values result in fewer, larger ones. The fourth step utilizes the mixture of 
product of multinomials (MPoM) [5], a probability-based model chosen for its superior 
performance compared to other synthetic algorithms in our previous experiments, to 
generate synthetic data.

Next, digital twins are selected for each community based on a distance criterion. 
Specifically, for each community, we first identify the central real patient node and then 
calculate the distance from this central node to the farthest real patient node within 
the same community. Digital twins are assigned to the community if their distance to 
the central node is less than this maximum within-community distance. Finally, Syn-
Twin employs a majority vote approach to predict mortality using features from both 
real patients and digital twins. The performance is evaluated using the area under the 
receiver operating characteristic curve (AUROC), calculated across 1000 bootstrapped 
samples from each large community’s validation dataset.

 Experiment setup

In our experimental design, we first compare seven different size cancers: ovary, cer-
vix uteri, small intestine, hepatic flexure, nasopharynx, oropharynx, and other urinary 
organs to the baseline, breast cancer, in the previous result. Second, we compare differ-
ent size within following three cancers: colorectal, non-Hodgkin lymphoma, and blad-
der. For all cancers, if a community is built on nr ​ real patients, we evaluate mortality 
prediction in target patients using the following setups: (A) the remaining nr − 1 real 
patients; (B) all ns ​ digital twins from the same community; (C) a combination of the 
nr − 1 ​real patients and ns ​ digital twins; (D) the nr − 1 closest digital twins selected from 
the ns ​; (E) those same nr − 1 closest digital twins together with the nr − 1 real patients; 
and (F) nr − 1 real patients sampled from outside the community. Figure 2 presents one 
representative example to illustrate the six experimental setups.

Fig. 2  Study design for comparing outcome prediction using real patients and/or digital twins. The large 
circles represent a community within the patient network
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Results
Table  1 presents an overview the AUROC performance of SynTwin for predicting 
mortality in the holdout data across various cancer sites for each study design (A-F). 
As sample size increased, the range of confidence intervals narrowed down, indicat-
ing improved precision in the estimates. This trend was particularly evident in cancers 
with larger sample sizes (small intestine, cervix uteri, ovary, and breast), where AUROC 
values stabilized with ranges of 0.02–0.04, allowing for more confident comparisons 
between study designs. For cancers with more than 10,000 cases, significantly higher 
AUROCs were observed for study designs D and E compared to the other designs, rang-
ing from 0.835 and 0.828 for cervix uteri (0.720 for A) to 0.882 and 0.884 for ovarian 
cancer (0.858 for A), respectively. Cancers with fewer than 10,000 cases (hepatic flexure, 
nasopharynx, oropharynx, and other urinary organs) had wider confidence intervals, 
ranging from 0.06–0.22, with overlapping performances across study designs.

Figure 3 shows the performance of different study designs (A-F) as the dataset size var-
ies for each cancer site. Study designs D and E consistently perform better than the other 
designs, with a minimum improvement in AUROC of 0.06, when compared to study 
design A. The gap between the confidence intervals of different study designs increases 
as the sample size increases while the range of confidence intervals decreases, as shown 
in the average variance plot (Fig. 4). These results are consistent with the trends observed 
across multiple cancer sites in Table 1.

The comparable performance of SynTwin across different study designs in smaller 
sample sizes highlights the challenges associated with predicting mortality in less exten-
sive datasets. Factors such as data heterogeneity and the inherent complexity of smaller 
datasets may contribute to these results. Interestingly, SynTwin exhibited consistent 
performance across cancers with large sample sizes, irrespective of the variation in the 

Table 1  Comparison of SynTwin performance as measured by AUROC on various cancer datasets

a Real patients (A), digital twins (B), real patients and digital twins (C), closest digital twins (D), real patients and closest 
digital twins (E), and real patients outside the community (F). Bolded metric values are significantly better than the others

Approximate 
sample size 
(Mortality 
rate %)

Cancer 
site

Designa A B C D E F

90,000 (50%) Breast [9] mean 0.791 0.784 0.783 0.864 0.852 0.494

95% CI [0.781, 0.800] [0.774, 0.794] [0.773, 0.793] [0.857, 0.872] [0.844, 0.860] [0.482, 0.507]

30,000 
(58.53%)

Ovary mean 0.858 0.848 0.842 0.882 0.884 0.431

95% CI [0.843,0.872] [0.833,0.864] [0.827,0.858] [0.868,0.895] [0.871,0.897] [0.411,0.452]

20,000 
(34.65%)

Cervix 
uteri

mean 0.720 0.708 0.702 0.835 0.828 0.496

95% CI [0.700, 0.741] [0.687, 0.729] [0.680, 0.723] [0.819, 0.851] [0.811, 0.846] [0.473, 0.519]

10,000 
(38.49%)

Small 
intestine

mean 0.783 0.772 0.761 0.872 0.861 0.468

95% CI [0.761,0.804] [0.751,0.794] [0.738,0.783] [0.856,0.888] [0.843,0.878] [0.442,0.493]

5,000 (46.25%) Hepatic 
flexure

mean 0.768 0.789 0.780 0.852 0.844 0.554

95% CI [0.730,0.807] [0.752,0.826] [0.743,0.818] [0.821,0.883] [0.812,0.876] [0.509,0.599]

3,000 (44.31%) Naso-
pharynx

mean 0.597 0.594 0.578 0.708 0.709 0.552

95% CI [0.540,0.654] [0.541,0.648] [0.524,0.632] [0.657,0.759] [0.660,0.759] [0.493,0.612]

2,000 (56.83%) Orophar-
ynx

mean 0.671 0.683 0.664 0.746 0.768 0.438

95% CI [0.608,0.733] [0.620,0.746] [0.599,0.728] [0.687,0.804] [0.712,0.820] [0.368,0.508]

1,000 (59.56%) Other 
urinary 
organs

mean 0.467 0.530 0.466 0.670 0.635 0.522

95% CI [0.356,0.578] [0.419,0.640] [0.355,0.578] [0.562,0.778] [0.522,0.749] [0.419,0.626]
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percentage of mortality among different cancer types, from 35% for small intestine to 
58% for ovarian cancer.

 Discussion
We have demonstrated the application of SynTwin, a digital twin approach that uses 
network science and synthetic data, to different cancer sites and evaluated the meth-
od’s effective sample size by predicting the mortality of cancer patients. By analyzing 
the performance across different sample sizes and study designs, we gained a deeper 

Fig. 3  SynTwin performance as measured by AUROC across different sample sizes and study designs for each 
cancer site. *Real patients (A), digital twins (B), real patients and digital twins (C), closest digital twins (D), real 
patients and closest digital twins (E), and real patients outside the community (F)
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understanding of the strengths and limitations of digital twins in mortality prediction 
across diverse cancer contexts. Despite variations in mortality rates, SynTwin consist-
ently performed well across cancers with sample sizes exceeding 10,000 cases, high-
lighting its robustness in mortality prediction. Our findings support the hypothesis that 
network-based digital twins improve predictive accuracy by closely resembling the tar-
get patient, rather than relying solely on real patient data [9].

This study underscores the importance of considering sample size and mortality esti-
mates when developing and evaluating predictive models like SynTwin, as the method 
maintained robust performance despite varying sample sizes and mortality ranges. How-
ever, several considerations for future research remain. One key next step is expanding 
the set of clinical variables to further validate SynTwin’s predictive capabilities across dif-
ferent disease domains and patient populations. The synthetic dataset generator used in 
this study (MPoM) only models categorical features, and therefore cannot be directly 
applied to numerical features. Moreover, scaling SynTwin to large datasets with more 
features might be computationally intensive, making it essential to optimize the method 
for efficiency. Artificial intelligence and deep learning techniques could refine synthetic 
data generation, improving SynTwin’s adaptability to a broader range of datasets.

As SynTwin is applied to diverse datasets, feature selection will become an increas-
ingly important challenge. The current study, using the SEER data, relied on a small set 
of features deemed most relevant for cancer mortality prediction. However, selecting the 
most informative features is essential for maintaining predictive accuracy and compu-
tational efficiency in larger datasets. A promising approach is integrating expert knowl-
edge from biomedical knowledge bases (KB) for feature selection [14], which could 
refine patient similarity networks and improve synthetic patient generation. Prior work, 
such as our study on a knowledge graph for Alzheimer’s disease (AlzKB), has demon-
strated how KB-driven approaches can prioritize meaningful features in biomedical 
modeling [12]. Incorporating KBs into SynTwin could improve both interpretability and 
predictive performance of the model by leveraging curated medical insights for patient 

Fig. 4  Average variance of AUROC across the three cancer sites by study design and sample size. *Real 
patients (A), digital twins (B), real patients and digital twins (C), closest digital twins (D), real patients and 
closest digital twins (E), and real patients outside the community (F)
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similarity calculations and synthetic patient generation. Additionally, large language 
models (LLMs) could further enhance SynTwin by integrating insights from medical lit-
erature and KBs, extracting patient- and disease-specific information, and supporting 
clinical decision-making. Future work should explore these avenues to improve the pre-
cision, interpretability, and clinical utility of SynTwin in precision medicine.

SynTwin shows promise in predicting mortality among cancer patients, with consist-
ent performance observed in larger datasets and across various cancer types. The trends 
in performance reported in this study highlights the importance of using adequate sam-
ple size in predictive modeling. Optimizing sample size enhances the adaptability of Syn-
Twin, thereby guiding future research and facilitating its application in clinical settings. 
Expanding its use beyond cancer mortality prediction could open new opportunities for 
personalized, data-driven decision-making in healthcare.
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