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Abstract 

Acute myeloid leukemia (AML) is caused by proliferation of mutated myeloid progeni-
tor cells. The standard chemotherapy regimen does not efficiently cause remission 
as there is a high relapse rate. Resistance acquired by leukemic stem cells is suggested 
to be one of the root causes of relapse. Therefore, there is an urgency to develop 
new drugs for therapy. Repurposing approved drugs for AML can provide a cost-
friendly, time-efficient, and affordable alternative. The multiscale interactome network 
is a computational tool that can identify potential therapeutic candidates by com-
paring mechanisms of the drug and disease. Communities that could be potentially 
experimentally validated are detected in the multiscale interactome network using 
the algorithm CRank. The results are evaluated through literature search and Gene 
Ontology (GO) enrichment analysis. In this research, we identify therapeutic candi-
dates for AML and their mechanisms from the interactome, and isolate prioritized 
communities that are dominant in the therapeutic mechanism that could potentially 
be used as a prompt for pre-clinical/translational research (e.g. bioinformatics, labora-
tory research) to focus on biological functions and mechanisms that are associated 
with the disease and drug. This method may allow for an efficient and accelerated 
discovery of potential candidates for AML, a rapidly progressing disease.

Keywords:  Acute myeloid leukemia (AML), Drugs, Therapeutic targets, Human 
interactome, Networks, Community detection

Introduction
Acute myeloid leukemia (AML) originates from myeloid progenitor cells that have 
acquired mutations to proliferate and halt differentiation to allow the progressive 
accumulation of immature cells in the bone marrow [1, 2]. Standard therapy for 
AML is the combination of either daunorubicin or idarubicin with cytosine arabino-
side [3]. The complete remission rate from this therapy is 60–85% for patients under 
60 years and 40–60% for patients over 60 years [4]. However, there are many cases 
of relapse (adaptive resistance) and refractory disease (resistance to therapy occur-
ring during primary treatment). Unfortunately, due to adaptive resistance, the 5-year 
overall survival rate is 40–50% for patients under 60 years and 15–20% for patients 
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over 60 years [5]. This detrimental effect caused by AML is suggested to stem from a 
subpopulation of resistant leukemia cells known as minimal residual disease (MRD). 
Leukemia stem cells located in the MRD are suggested to induce regrowth of AML 
in relapse [5]. Therefore, this indicates that standard therapy is not sufficient to 
combat AML and that there is a need for more therapeutic options.

Discovering new drugs to treat this genetically diverse disease through the drug 
development pipeline would lead to consumption of a lot of money (2.5 billion dol-
lars USD) and time (13–15 years) [1, 2]. A solution to reduce cost and time is repur-
posing drugs that have already been approved. More specifically, prior knowledge of 
the safety, toxicity, and efficacy of approved drugs will reduce the cost and time to 
provide affordable therapeutic options to AML patients [1]. To discover these poten-
tial therapeutic candidates, the multiscale interactome network can be used.

The multiscale interactome network is a network of approved drugs-protein 
interactions, disease-protein interactions, protein-protein interactions, protein-
biological function interactions, and biological function-biological function interac-
tions. This network can be used to predict potential drug candidates for a particular 
disease based on the principle that the drug candidate could treat a disease if the 
mechanism of the drug affects the same functions that are affected by the disease’s 
mechanism of action [6]. Hence, the candidate is predicted by comparing the visi-
tation frequency of all the nodes (diffusion profile) in the context of the drug and 
disease. This is computed by a biased random walk that starts from either the drug 
or disease node. In other words, the multiscale interactome generates computed 
mechanisms of the drug and disease which are then compared for similarities to be 
determined as a possible candidate for repurposing.

Protein-protein interactions that occur in a cell are modular. The structural organ-
ization of a cell facilitates the environment and functions of proteins. Furthermore, 
proteins can work as a “community” to elicit a general function (e.g., transcription of 
DNA). These communities could also include a pathway of proteins that are involved 
in regulatory mechanisms (e.g., regulating a hormone). In addition, these modu-
lar communities are interconnected forming a complex interaction. A community 
detection method, Communities through Directed Affiliations (CoDA), and a com-
munity prioritization metric, CRank can be used to detect important communities 
in the multiscale interactome network [8, 8]. The novelty of CRank is that it ranks 
communities based on specific metrics, with only an input of the network and list 
of communities detected by a community detection method, to indicate the most 
promising communities that can be experimentally validated. By combining the 
results from the multiscale interactome network with CRank, this paper attempts to 
evaluate the resulting candidates and predict the functional communities that their 
mechanisms belong to. AML is a complex hematologic disease which can benefit 
from a computational analysis for comprehension of its complexity to determine 
potential therapeutic options. This method could potentially act as a prompt to 
identify molecular/community interactions to research in pre-clinical/translational 
studies (e.g. bioinformatics, laboratory research) for repurposing in AML.
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Methods
Discovering potential drug candidates with the multiscale interactome

The multiscale interactome was constructed using 17,660 human proteins, 9798 biologi-
cal functions, 1661 drugs, and 840 diseases by Ruiz et  al. [6]. Constructing this large 
network required the arrangement of data on the individual interactions between pairs 
of these entities. More specifically, curating data for drug-protein, disease-protein, 
protein-protein, protein-biological function, and biological function-biological func-
tion interactions. A detailed instruction of how the interactions were obtained is pro-
vided in the paper by Ruiz et al. [6]. However, in general, various databases specific to 
the interactions were used to determine them. For example, Drug Repurposing Hub for 
drug-protein interactions, DisGeNet for disease-protein interactions, BioGRID for pro-
tein-protein interactions, Gene Ontology for protein-biological function interactions, 
and Gene Ontology-Biological Processes for hierarchical biological function-biological 
function interactions. A set of criteria was used to select pairs to develop a network of 
good quality. These criteria included ensuring that the pairs were experimentally val-
idated, the pairs were related to Homo sapiens, the protein-protein interactions were 
direct physical interactions, and the biological functions were relevant to a drug’s mode 
of action (e.g., affecting the regulatory mechanisms of a cell). Furthermore, drug-disease 
pairs were also formulated with various databases (e.g., Drug Indication Database). Simi-
larly, a set of criteria was used to refine this list of pairs. For example, this involved the 
selection of approved drugs, the selection of diseases not caused by infections, and that 
they were present in the databases that drug-protein and disease-protein interactions 
are derived from. It is important to note that the drug-disease pairs are not incorporated 
into the multiscale interactome. Instead, the multiscale interactome learns to predict 
this association through the medium of diffusion profiles.

Diffusion profiles of a drug or disease are determined using biased random walks in 
the multiscale interactome. Therefore, a random walker walks on the nodes in the net-
work by starting from a drug or a disease node which are connected to protein nodes. 
From the protein node, the random walker will continue to walk to either another pro-
tein or a biological function node. Finally, the random walker will continue to walk to 
either another biological function or protein node from the biological function node (e.g. 
drug/disease ⇔ protein ⇔ protein ⇔ biological function ⇔ lower-level biological func-
tion ⇔ higher-level biological function). The random walker chooses the next step based 
on edge weights that denote the relative importance of each type of node (W = wdrug , 
wdisease , wprotein , wbiologicalfunction , whigher−levelbiologicalfunction , wlower−levelbiologicalfunction ). 
More specifically, its next move is determined by the relative weights of its neighbor-
ing connected nodes. For example, when the random walker is situated at the protein 
node, the probability that the random walker will choose another protein node is wprotein

/wbiologicalfunction . As a result, the random walker will start at either the disease or drug 
node and choose to visit the next node or completely restart the walk based on the rela-
tive edge weights.

When the walk is completed after multiple rounds, the diffusion profile will encom-
pass the frequencies at which each protein and biological function node was visited for 
a particular drug or a disease. The comparison of the diffusion profiles of a drug (r(c) ) 
and disease (r(d) ) is used to predict if the drug can treat a specific disease based on the 
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similarity of the diffusion profiles. A higher similarity will indicate that the mechanisms 
of the disease and drug are potentially the same. This increases the likelihood that the 
drug can be used for treatment by affecting the mechanisms which are involved in the 
disease. Ruiz et  al. tuned the hyperparameters to optimize the predictability of the 
model by selecting the optimal hyperparameters determined from a sweep. The resulting 
optimal edge weights are drug = 3.2071696595616364, disease = 3.541889556309463, 
protein = 4.396695660380823, biological function = 6.583155399238509, lower-level 
biological function = 4.4863053901688685, and higher-level biological function = 
2.09685000906964, and α = 0.8595436247434408, where α is the probability of contin-
uing the walk. These optimal hyperparameters provided by Ruiz et al. are used in our 
research to predict potential drug candidates for acute myeloid leukemia.

Combining baseline metrics with diffusion profiles for promising results

The diffusion profiles of all the drugs contained in the multiscale interactome and of 
AML are obtained. Observing the diffusion profiles with no additional measurements 
does not provide significant results. As mentioned by Ruiz et  al., baseline metrics are 
taken into consideration in this study to measure the similarity of the diffusion profiles 
between the drugs and AML. Five baseline metrics used: L2 norm, L1 norm, Canberra 
distance, Cosine similarity, and Correlation distance. When the results from these met-
rics are ranked from having the highest similarity to the lowest similarity, the drugs fur-
ther down the list become less significant as their diffusion profiles become dissimilar to 
the diffusion profile of AML. Therefore, to focus on the top results, the top 10, top 20, 
and top 50 candidates from each baseline metric are selected. Then, within each range, 
the drugs that appear in more than one baseline metric are selected for further down-
stream calculations and analysis. Therefore, a total of 71 drugs were selected. The pur-
pose of this procedure is to take into account that the results of each baseline metric will 
not be identical, thus the presence of a drug in multiple metrics for a particular range 
(e.g., top 10) amplifies its significance in AML. It is important to note that top 30 and 
top 40 drugs were not considered because more drugs are included further down the list 
with top 50 drugs. This adds more variability and could change the result of which drugs 
hold the top 3 position.

Calculating the product of r (d)i  ∗ r (c)j  to determine significant drug candidates

After selecting the drug candidates based on similar diffusion profiles, the potential 
effectiveness of the candidates in AML needs to be considered to compare and select 
drugs for further analysis. This is implemented by determining the visitation frequency 
of the candidates in the diffusion profile of AML (r(d)i  ) and the visitation frequency of 
AML in the diffusion profile of the candidate drugs (r(c)j  ). In other words, the frequency 
at which the particular drug node is visited in the diffusion profile of AML and the fre-
quency at which the AML node is visited in the diffusion profile of a particular candidate 
drug is retrieved. These values are multiplied relative to the drug to generate a value that 
represents the contribution of these two factors in influencing the potential significance 
of the drug in the context of AML. Therefore, a drug with a high product value will sug-
gest that there were many visits involved. As a result, the drug will hold much relevance 
in the treatment of AML. In this study, the products for all three ranges of selected drugs 
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were individually determined (top 10, top 20, and top 50). Based on the values of the 
product, the drugs are ranked in each range. Then, the top 3 drugs from each range are 
selected and observed for further downstream analysis. This selection is performed to 
check the consistency of the position of the drugs. If there is a drug which holds the top 
position in all three ranges, it can be inferred that it possesses much therapeutic power 
in the treatment of AML.

Connecting the interactome with community detection and community prioritization

The network of protein interactions and biological function interactions in the multiscale 
interactome might intrinsically contain communities that derive from the biological 
interactions. To identify these communities and provide a deeper analysis, a community 
detection method was used, Communities through Directed Affiliations (CoDA) [8]. 
This method detects cohesive and 2-mode communities in both directed and undirected 
networks by fitting a Directed Affiliation Network Model to an unlabeled directed net-
work. A cohesive community refers to a community where the nodes within the commu-
nity are densely linked to each other, while a 2-mode community refers to a community 
where the nodes within the community link to other nodes in a bipartite style instead 
of linking to each other. More specifically, the identification of cohesive communities 
in the multiscale interactome can encompass proteins with similar biological functions 
(e.g. transcription of DNA) and the identification of 2-mode communities can encom-
pass proteins with similar regulatory functions (e.g. regulation of transcription) [8].

The algorithm for CoDA is written in C++, and the Ubuntu version of the executable 
was used to perform the community detection task. A text file containing the edgelist of 
the multiscale interactome was inputted with all the other parameters kept as default. 
The resulting output is two files where one contains the cohesive communities while 
the other contains the 2-mode communities. Although numerous communities are 
detected, the communities are predictions and not experimentally validated to be true. 
However, certain communities can be prioritized as statistically possible communities 
based on their structural integrity without the requirement of additional knowledge (e.g. 
gene expression data). This prioritization method is performed by CRank which uses 
four prioritization metrics: density, likelihood, boundary, and allegiance [8]. Density 
evaluates the strength of the connections within a community by observing the presence 
of densely nested communities. On the other hand, the likelihood metric evaluates the 
edges as a probability of being involved in a community. The boundary metric evaluates 
the quality of the boundary and how stable it is by observing how well the edges at the 
boundary distinguish the community and link to other parts of the network. Finally, the 
allegiance metric evaluates how prone the communities are to small alterations to the 
edges by determining the fraction of nodes in a community that have a higher probabil-
ity of its edges with connections directing within the community than the probability of 
its edges with connections directing outside the community.

These four metrics are calculated for and rank each community by combining the 
scores determined in the original network and the slightly perturbed version of the origi-
nal network in the prioritization metric formula. Next, the four metrics are combined 
to form the aggregate prioritization score by aggregating all four metrics based on the 
importance weight that was calculated to represent the contribution of each metric to 
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the aggregation score. An importance weight is necessary to calculate because the con-
tribution of each metric varies for different networks as their importance in various net-
works varies. Therefore, the aggregation prioritization score is a weighted average of the 
ranked lists for density, likelihood, boundary, and allegiance. In general, the higher the 
aggregation score calculated by Crank, the more stable the detected communities are 
to be prioritized. The algorithm for CRank is written in C++ and the code ran with the 
input of the detected communities from CoDA (either cohesive or 2-mode) and the edge 
list of the multiscale interactome. The resulting output is a text file containing a list of 
the communities and their corresponding prioritization scores.

Results
Significant candidates were identified by calculating the product of r(d)i  ∗ r(c)j  for drugs 
selected based on the five baseline metrics. To gain a better understanding of their 
mechanisms, the top 20 highly visited proteins and biological functions were identified 
for each candidate and AML. In addition, the genes that held importance in the context 
of the candidates and AML were determined by performing a calculation using the visi-
tation frequencies of the proteins. The results from this calculation were used as a colour 
gradient in the constructed visual networks of each candidate and AML with the top 20 
proteins and biological function nodes. Furthermore, to understand the broader func-
tions of the mechanisms involved, the prioritized cohesive and 2-mode communities 
that were most frequently present in the top 20 nodes were identified (Fig. 1).

Results from calculating the product of r (d)i  ∗ r (c)j  to determine significant drug candidates

Prior to the multiplication of r(d)i  and r(c)j  , drugs are selected based on their frequency 
of presence in the top 10, top 20, and top 50 ranges of the five baseline metrics. This 
was performed by encoding a counter to record the total number of times a drug is pre-
sent in the results of the five baseline metrics for each range. To ensure that there was 
no error, the counting was also performed manually on an excel sheet. Although this 
verified that the code performed correctly, it also showed that two drugs were repre-
sented by two nodes. More specifically, arsenic trioxide was represented as “arsenic-
trioxide” and “DB01169”, and megestrol acetate was represented as “megestrol-acetate” 
and “DB00351”. To overcome this duplication, each candidate was represented by their 
DrugBank ID to maintain consistency with the other nodes.

After this refinement, the visitation frequencies of the selected drugs in the top10, 
top 20, and top 50 ranges in the AML diffusion profile were determined (r(d)i  ). In the 
top 10 range, fostamatinib (1.8635e- 3), zinc (8.0001e- 4), and lasofoxifene (1.9427e- 
4) take the top 3 positions for r(d)i  . Similarly, these candidates take the same positions 
for the top 20 range for r(d)i  . In the top 50 range, fostamatinib, zinc, and L-glutamic 
acid (6.0801e- 4) take the top 3 positions. Subsequently, the visitation frequency of 
AML in the diffusion profile of the selected drugs in the top 10, top 20, and top 50 
ranges were determined (r (c)j  ). Compared to the calculation of r(d)i  , there was more 
variation in the candidates that were ranked at the top 3 positions for r (c)j  . The top 10 
range consisted of lasofoxifene (2.3208e- 3), sunitinib (1.6211e- 3), and zinc (3.6870e- 
4) in the top 3 positions. In the top 20 range, lasofoxifene, vinblastine (2.1063e- 3), 
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and sunitinib take the top 3 positions. For the range of top 50, podophyllotoxin 
(2.9032e- 3), lasofoxifene, and vinblastine take the top positions.

Although there is a variation in the candidates that comprise the top 3 positions 
in r(d)i  and r (c)j  for all three ranges, it is the multiplication of these factors that will 
encompass their contribution and represent the relevance of the drug candidates 
in AML. The product values for each selected drug in the top 10 range reveal that 
fostamatinib (5.836730435016371e- 07), lasofoxifene (4.508462045960589e- 07), 
and zinc (2.949656116389859e- 07) acquire the top 3 positions. These drugs main-
tain their positions in the top 20 range. In the top 50 range, L-glutamic acid 
(7.622297565141564e- 07), fostamatinib, and lasofoxifene take the top 3 positions. 
When the top 3 candidates, derived from multiplication, for each range are com-
piled together, fostamatinib, lasofoxifene, zinc, and L-glutamic acid are observed 
to be the top candidates maintaining these positions. However, when identifying 
the product of r(d)i  and r (c)j  for all the drugs in the multiscale interactome without a 
baseline metrics-based selection process, the results are different. In this case, the 
top 3 drugs are gemtuzumab ozogamicin (1.5778308390603061e- 06), deslanoside 
(9.378050182994979e- 07), and L-glutamic acid (7.622297565141564e- 07).

Proteins and biological functions associated with the significant candidates

The benefit of the multiscale interactome is that its incorporation of the diffusion 
profile can be utilized to discover proteins and biological functions that hold impor-
tance in the mechanism of a drug or a disease. Therefore, the top 20 highly visited 
proteins and biological functions of fostamatinib, lasofoxifene, zinc, L-glutamic acid, 
and acute myeloid leukemia in their diffusion profiles were determined. A table sum-
mary of the discovered proteins and biological functions for the four candidates and 
AML can be found in Table 1.

Identifying important genes by simultaneously observing its frequency in the drug 

and disease

Although the top 20 highly visited proteins and biological functions were determined 
for the candidates, it does not consider how relevant the genes of the proteins are in 
the context of treating AML. To determine the proteins that may hold vital impor-
tance in the mechanism of treating AML, the treatment importance is calculated. This 
involves the multiplication of the visitation frequency of the protein node in the drug 
diffusion profile with its visitation frequency in the AML diffusion profile. Therefore, 
the treatment importance was calculated for all the proteins in the multiscale interac-
tome for each drug.

In Table  1, proteins which have a high treatment importance are bolded (higher 
rank than 50). These proteins provide a hint towards the mode of action of a drug in 
the context of AML. Furthermore, Table  2 shows the treatment importance values 
of all the top AML proteins in each candidate and Table 3 shows the top 20 proteins 
with the highest treatment importance value in each candidate.
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Table 1  The top 20 proteins and biological functions of the 4 candidates and AML

Fostamatinib Lasofoxifene

protein phosphorylation ESR1 (2)

protein autophosphorylation ESR2 (3)

intracellular signal transduction CNR2 (1)

positive regulation of transcription by 
RNA polymerase II

GNA15 (4)

peptidyl-tyrosine phosphorylation positive regulation of cytosolic calcium ion concentration

positive regulation of transcription, 
DNA-templated

negative regulation of transcription by RNA polymerase II

phosphorylation positive regulation of transcription, DNA-templated

HSP90 AA1 (15) positive regulation of DNA binding transcription factor activity

negative regulation of apoptotic 
process

positive regulation of transcription by RNA polymerase II

peptidyl-serine phosphorylation transcription by RNA polymerase II

cellular protein modification process regulation of cytosolic calcium ion concentration

negative regulation of transcription by 
RNA polymerase II

cellular response to estradiol stimulus

EGFR (12) positive regulation of calcium ion transport into cytosol

regulation of RNA splicing negative regulation of gene expression

NEK1 (337) calcium ion transport into cytosol

negative regulation of transcription, 
DNA-templated

negative regulation of DNA binding transcription factor activity

positive regulation of gene expression positive regulation of cytosolic calcium ion concentration involved in phospholipase 
C-activating G-protein coupled signaling pathway

LRRK2 (18) positive regulation of RNA polymerase II transcriptional preinitiation complex 
assembly

NTRK1 (10) negative regulation of transcription, DNA-templated

APP (7) negative regulation of production of miRNAs involved in gene silencing by miRNA

Zinc L-Glutamic Acid Acute Myeloid Leukemia

CPN1 (979) GRIN1 (48) positive regulation of transcription by RNA 
polymerase II

FN1 (6) GRIK2 (63) positive regulation of transcription, DNA-
templated

APOA1 (16) GOT2 (70) negative regulation of transcription, DNA-
templated

C3 (40) SLC1 A1 (55) negative regulation of transcription by RNA 
polymerase II

IGHM (163) GRIA2 (190) MYC

APP (2) SLC25 A22 (171) RUNX3

CLU (12) GOT1 (29) STAT3

C5 (209) GRIN2 A (151) IDH1

TP53 (4) EARS2 (156) ANXA2

C8 A (533) SLC1 A3 (51) GATA1

complement activation GLUD2 (145) NPM1

A2M (47) GLUD1 (100) SPI1

APLP1 (116) SLC1 A2 (131) PSIP1

APOE (9) calcium ion transmembrane import into 
cytosol

GATA2

KNG1 (95) GLS (180) KRAS

peptide cross-linking response to ethanol NSD1

C8G (179) GRID2 (182) GFI1

C8B (907) TAT (20) HSPB1

positive regulation of transcription by 
RNA polymerase II

FPGS (107) EHMT2

HRNR (166) GRM7 (166) RUNX1
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Visualizing the interactome of the drug candidates and AML

Interpretation of the mechanism of a drug from a list of highly visited biological func-
tions and proteins is difficult to process. However, a visual representation of a network 
of proteins and biological functions from the candidate and AML provides a compre-
hensive format for interpretation. Cytoscape is a tool that facilitates the visualization of 
network interactions with the provided graph file (.graphml) [8]. Therefore, a subgraph 
was induced between the top 20 highly visited proteins and biological functions of each 
candidate and AML. The protein nodes were given a triangular shape, the biological 
function nodes were given a rectangular shape, and the drug and disease nodes were 
given a hexagonal shape. In addition, the visitation frequency of all the nodes in the 
AML diffusion profile and the candidate diffusion profile were added respectively to the 
nodes in the Cytoscape software. A colour gradient can be formed using the style tool 
in Cytoscape for either the AML diffusion profile or the candidate diffusion profile. This 
enables a visual representation of the visitation frequencies of the nodes in either diffu-
sion profiles. By switching between the two diffusion profiles, the network can be for-
matted to represent if the nodes are interacting more with either the drug or the disease. 
The visual representation that results from this formatting for all four candidates can be 
seen in Figs. 2, 3, 4 and 5. Furthermore, the treatment importance value of each protein 
node is added to the software to determine the key proteins that are potentially involved 
in the therapeutic mechanism in AML (Figs. 2c, 3, 4 and 5c).

Detecting the prioritized communities involved in the top 20 proteins and biological 

functions

To observe the possible cellular processes and functions involved with the candi-
dates, the frequency of the top 20 nodes in the highly prioritized communities were 
observed. This was performed by selecting the cohesive and 2-mode communities 

Table 2  Treatment importance of the top AML proteins in the context of the candidates

The treatment importance values of the top acute myeloid leukemia proteins are shown in the table according to the 
respective top 4 candidates. The bolded numbers have a treatment importance rank that is one to 50

AML proteins Fostamatinib Lasofoxifene Zinc L-Glutamic acid

MYC 8 6 5 2
RUNX3 102 97 237 276

STAT3 11 9 34 32
IDH1 336 280 256 6
ANXA2 23 15 21 30
GATA1 41 16 63 56

NPM1 16 10 15 12
SPI1 134 38 132 139

PSIP1 183 41 156 164

GATA2 54 33 80 68

KRAS 13 17 20 5
NSD1 105 32 200 218

GFI1 182 80 190 153

HSPB1 17 19 32 11
EHMT2 136 28 124 123

RUNX1 62 52 42 67
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that had a CRank score greater than 80%. The results of this selection process led to 
23 communities in cohesive communities and 20 communities in 2-mode communi-
ties. To efficiently evaluate the presence of the nodes within these communities, each 
community was saved as a text file. Furthermore, tables were created for cohesive and 
2-mode communities which contained the community name, the CRank information, 
the text file name, and the nodes within the community (Supplementary Table  1 - 
Supplementary Table 2). However, the table for cohesive communities indicated that 
there were two communities with the name ‘7157’. This is the result from the names 

Fig. 1  Flowchart demonstrating a general overview of the method being assessed to determine potential 
therapeutic targets for acute myeloid leukemia
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being determined by the first node in the communities. To overcome this, after deter-
mining the location of the 20 nodes of each candidate and AML in the cohesive and 
2-mode communities by looping through the text files, the cohesive community table 
was used to distinguish the two cohesive communities. This was executed by manu-
ally replacing the name to ‘715712’ for the community ranked in twelfth place in each 

Fig. 2  Subgraphs for fostamatinib with colour gradient representation of diffusion profiles and treatment 
importance. a The colour gradient represents the diffusion profile in fostamatinib. b The colour gradient 
represents the diffusion profile in AML. c The colour gradient represents the treatment importance
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candidate’s location csv file if the nodes were present in the ‘nodes’ column for that 
community in the cohesive community table (Supplementary Table 1).

These cohesive community location files and the edited cohesive community 
table along with the files for 2-mode communities were used to determine the fre-
quency of the top 20 nodes within the respective communities and were visualized 
as graphs (Figs. 6-7). It is important to note that each community was given a num-
ber that reflected their prioritization rank from CRank. Finally, the most frequent 

Fig. 3  Subgraphs for lasofoxifene with colour gradient representation of diffusion profiles and treatment 
importance. a The colour gradient represents the diffusion profile in lasofoxifene. b The colour gradient 
represents the diffusion profile in AML. c The colour gradient represents the treatment importance
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communities from each graph of the candidates and AML for 2-mode and cohe-
sive communities were searched in the “GO Enrichment Analysis” to determine the 
major biological processes involved in the community.

Discussion
The application of diffusion profiles from the multiscale interactome to baseline 
metrics and multiplication of specific visitation frequencies resulted in four sig-
nificant candidates for acute myeloid leukemia (AML) and they are fostamatinib, 

Fig. 4  Subgraphs for zinc with colour gradient representation of diffusion profiles and treatment importance. 
a The colour gradient represents the diffusion profile in zinc. b The colour gradient represents the diffusion 
profile in AML. c The colour gradient represents the treatment importance
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lasofoxifene, zinc, and L-glutamic acid. However, when the baseline metrics were 
discarded in the selection process, the resulting top 3 candidates are gemtuzumab 
ozogamicin, deslanoside, and L-glutamic acid. Although gemtuzumab ozogamicin 
and deslanoside might have therapeutic potential in AML, there is higher confidence 
for the candidates that are selected with the baseline metrics because it focuses on 

Fig. 5  Subgraphs for L-glutamic acid with colour gradient representation of diffusion profiles and treatment 
importance. a The colour gradient represents the diffusion profile in L-glutamic acid. b The colour gradient 
represents the diffusion profile in AML. c The colour gradient represents the treatment importance
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the similarity between the drugs and AML diffusion profiles. A higher similarity 
indicates that similar proteins and biological functions were visited in AML and the 
candidate. This implies that mechanisms of the candidate and AML are similar, thus 

Fig. 6  Location of top 20 nodes in the cohesive and 2-mode communities. a Location of top nodes of 
fostamatinib in top cohesive communities. The 18th ranked cohesive community has the highest frequency 
of nodes. b Location of top nodes of fostamatinib in top 2-mode communities. The 1 st ranked 2-mode 
community has the highest frequency of nodes. c Location of top nodes of lasofoxifene in top cohesive 
communities. The 16th ranked cohesive community has the highest frequency of nodes. d Location of top 
nodes of lasofoxifene in top 2-mode communities. The 20th ranked 2-mode community has the highest 
frequency of nodes. e Location of top nodes of zinc in top cohesive communities. The 2 nd , 8 th , and 23rd 
ranked cohesive communities have the highest frequency of nodes. f Location of top nodes of zinc in 
2-mode communities. The 11th ranked 2-mode community has the highest frequency of nodes
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there is higher confidence that the candidates could impact AML by affecting the 
mechanisms of AML.

Fostamatinib

Fostamatinib achieves the first rank in the top 10 and top 20 selected range and sec-
ond rank in the top 50 selected range for r(d)i  ∗ r (c)j  multiplication. Therefore, the high 
rank demonstrates that fostamatinib is a strong therapeutic candidate for AML. The 
induced subgraph for fostamatinib and AML indicates that the drug interacts with 
tyrosine kinase signalling pathways (“protein phosphorylation”, “protein autophos-
phorylation”, “cellular protein modification process”, “peptidyl-tyrosine phosphoryla-
tion”) that are important for the immune system and AML for functions such as cell 
proliferation and cytokine signalling (“EGFR”, “NTRK1”, “STAT3”, “KRAS”, “MYC”) 
(Fig. 2). A general examination of the subgraph illustrates that the top proteins and 
biological functions of fostamatinib encompass receptors and their subsequent pro-
tein signalling cascade (“EGFR”, “NTRK1”, “protein phosphorylation”), whereas 
for AML it encompasses the regulation of genes by transcription factors (“MYC”, 
“STAT3”, “RUNX1/3”, “positive regulation of gene expression”, “negative regulation of 
transcription by RNA polymerase II”).

Fig. 7  Location of top 20 nodes in the cohesive and 2-mode communities (continued). a Location of top 
nodes of L-glutamic acid in top cohesive communities. The 13th ranked cohesive community has the highest 
frequency of nodes. b Location of top nodes of L-glutamic acid in top 2-mode communities. The 12th , 13th , 
and 17th ranked 2-mode communities have the highest frequency of nodes. c Location of top nodes of AML 
in top cohesive communities. The 16th ranked cohesive community has the highest frequency of nodes. d 
Location of top nodes of AML in 2-mode communities. The 20th ranked 2-mode community has the highest 
frequency of nodes
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Adjusting the colourscale of the subgraph to reflect the treatment importance values 
helps focus on the nodes that are important in the context of fostamatinib and AML 
(Fig. 2c). This resulted in the identification of EGFR, NTRK1, HSP90AA1, APP, KRAS, 
STAT3, NPM1, and MYC as the important proteins. Fostamatinib forms edges with 
EGFR and NTRK1 which implies that it interacts with these receptors. According to the 
DrugBank database, fostamatinib acts as an inhibitor when interacting with EGFR and 
NTRK1 [8]. A study has identified crosstalk between EGFR and NTRK1 to cause trans-
activation to occur between these receptors in monocytes. In other words, the activation 
of the EGFR receptor resulted in the phosphorylation and activation of NTRK1 (TrkA) 
[8]. Furthermore, significant expression of NTRK1 was identified in myeloid leukemia 
cell lines and high EGFR expression was identified in its phosphorylated state in AML 
blasts in a subset of AML patients [8, 8]. According to the study, the inhibition of EGFR 
limited the activation of NTRK1 and the inhibition of NTRK1 limited the activation of 
EGFR [8].

Amyloid precursor protein (APP) is a membrane protein that can be released into 
active soluble fragments upon cleavage. The overexpression of APP in a subset of AML 
patients was determined to be an indicator for the formation of tumours of leukemic 
cells in regions other than the blood or bone marrow (Extramedullary leukemia). A study 
by Rocha et al. demonstrated that APP interacts with EGFR ligands, epidermal growth 
factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) [8, 8, 8]. In addi-
tion, they discovered that the overexpression of APP in HeLa and neuroblastoma cells, 
with the addition of EGF, significantly increased the amount of phosphorylated ERK. 
Along with the RAS/MEK/ERK1/2 pathway, PI3 K/AKT and JAK/STAT are the primary 
signalling cascades downstream of EGFR [8]. Jiang et al. observed the regulatory effects 
of microRNA - 144 on APP in an AML cell line [8]. The study showed that microRNA 
- 144 negatively regulated APP by reducing the expression of the APP protein. Further-
more, interfering with the expression of APP resulted in a decrease in cell migration and 
expression of phosphorylated ERK and c-Myc. Therefore, the researchers hypothesized 
that the APP/p-ERK/c-Myc/MMP- 2 pathway plays a role in cell migration. Myc is the 
top protein node for AML and represents the highest treatment importance in the sub-
graph in the context of AML and fostamatinib (Table 1, Fig. 2c). The activation of Myc 
is known to contribute to the development of leukemia from hematopoietic stem cells 
(leukemogenesis). More specifically, it is involved in the activation of genes that play a 
role in self-renewal of leukemia stem cells and cell growth [8].

In general, it can be inferred from the subgraph that the effect of fostamatinib toward 
AML could potentially function through pathways involved in cell proliferation, growth, 
and migration. Moreover, in table 3, which shows the 20 proteins with the highest treat-
ment importance values for all the candidates, Kit and Jak2 are at the top 2 positions for 
fostamatinib and AML. Mutations in Kit and Jak2 have been found to induce prolifer-
ation by increasing tyrosine kinase activity [8]. Currently, fostamatinib is used to treat 
rheumatoid arthritis and immune thrombocytopenia by inhibiting the spleen tyrosine 
kinase (SYK). SYK is known to be present in hematopoietic cells and recent publications 
in 2020 and 2022 evaluated the therapeutic possibility of fostamatinib in AML cells which 
demonstrated the ability of SYK inhibitors to decrease proliferation of AML cells [8, 8, 8].
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Lasofoxifene

Lasofoxifene has been intended for the treatment of postmenopausal osteoporosis and 
vaginal atrophy. Its mechanism of action involves the selective interaction with ERα 
(ESR1) and ERβ (ESR2) receptors [8]. Depending on the type of tissue, lasofoxifene can 
have an activating (agonist) or inhibitory effect (antagonist) on the estrogen receptor. 
For example, lasofoxifene acts as an agonist in the bone and an antagonist in the mam-
mary gland and uterus [8]. Aside from the intended use of lasofoxifene, it also has pros-
pects in treating ER-positive breast cancer as study has shown its ability to limit tumour 
growth and metastases [8]. Although there has been no preclinical studies related to the 
application of lasofoxifene in acute myeloid leukemia, a recent paper in 2018 investi-
gated the effect of lasofoxifene and other modulators on B-cell and T-cell development 
(adaptive immunity) [8].

Lasofoxifene achieved second rank in the top 10 and top 20 selected range and third 
rank in the top 50 selected range for r(d)i  ∗ r(c)j  multiplication. The subgraph depicts that 
the biological functions associated with lasofoxifene are related to regulating calcium 
homeostasis (“positive regulation of cytosolic calcium ion concentration”, “positive reg-
ulation of cytosolic calcium ion concentration involved in phospholipase C-activating 
G-protein coupled signaling pathway”) and gene expression (positive regulation of RNA 
polymerase II transcriptional preinitiation complex assembly”, “negative regulation of 
production of miRNAs involved in gene silencing by miRNA) (Fig.  3). In the context 
of treatment importance, the subgraph indicates ESR1, ESR2, CNR2, and GNA15 to be 
valuable in the context of the drug and AML (Fig. 3c).

Table 3  Top 20 treatment importance ranked proteins in the candidates

The top 20 proteins with the highest treatment importance value in each candidate is depicted in this table

Fostamatinib Lasofoxifene Zinc L-glutamic Acid

JAK2 CNR2 S100 A8 GMPS

KIT ESR1 APP MYC

DAPK1 ESR2 ESR1 HNRNPL

MET GNA15 TP53 APP

CSF1R APP MYC KRAS

FLT3 MYC FN1 IDH1

APP RGS2 HDAC1 EGFR

MYC LPAR1 MDM2 TRIM25

HNRNPL STAT3 APOE ADCY7

NTRK1 NPM1 GSN NTRK1

STAT3 TP53 SH3GL1 HSPB1

EGFR TRIM25 CLU NPM1

KRAS HNRNPL EGFR ELAVL1

TRIM25 EP300 PARP1 GRM1

HSP90 AA1 ANXA2 NPM1 SGK1

NPM1 GATA1 APOA1 PHB

HSPB1 KRAS HNRNPL CD44

LRRK2 CEBPA JUP ESR2

SRC HSPB1 HDAC4 CEBPA

TP53 TGFB1 KRAS TAT​
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ESR1 and ESR2 mediate the expression of specific genes by interacting with a DNA 
binding site known as the estrogen response element [8, 8, 8]. There is differential 
expression of these estrogen receptors in different tissue types and can have differ-
ent effects. For example, ESR1 is predominantly expressed in liver, kidney, breast, 
and ovary, whereas ESR2 is predominantly expressed in the bone, prostate, ovary 
and central nervous system [8]. Furthermore, ESR1 is mainly involved in promot-
ing growth such as in the uterine tissue and ESR2 is primarily involved in limiting 
proliferation such as in the bone marrow stem cells. There is emerging interest in 
investigating the effect of estrogen receptors in AML as disruption of its expression 
has been observed in this disease. In addition, men are more likely to be diagnosed 
with lymphomas or lymphocytic leukemia and this implies a potential influence of 
the sex-hormone, estrogen, in preventing the formation of these cancers [8].

In the subgraph, according to Table 3, the protein that ESR1 interacts with which 
has the highest treatment importance is Myc (Fig.  3). Study has shown that ESR1 
is involved with mediating and increasing the transcription of genes regulated by 
c-Myc through interaction near the estrogen responsive promoter region with 
estradiol, a type of estrogen, and c-Myc [8, 8]. Rehman et  al. have discovered that 
increased estrogen levels in breast cancer patients corresponded to elevated expres-
sion of c-Myc in leukocytes present in the peripheral breast cancer blood. Moreo-
ver, when comparing ESR1 expression levels in leukocytes of healthy subjects and 
patients, there was a significantly greater relative expression of ESR1 in the patients. 
Although the leukocytes are found in the peripheral blood of breast cancer, these 
findings can be informative in the context of AML [8]. However, there has also 
been evidence that a greater ratio value of ESR2/ESR1 increased the sensitivity of 
AML cells of patients to a drug, diosmetin, that targets ESR2 [8]. A study observed 
that diosmetin increased the level of intracellular reactive oxygen species in oste-
osarcoma cells which provides insight into how the drug promotes cell death [8]. 
According to Table 3, Stat3 has the highest treatment importance compared to the 
other proteins that interact with ESR2. Ning et al. have shown that diosmetin is able 
to cause apoptosis in osteosarcoma cells through the inhibition of the stat3/c-Myc 
signalling pathway which is involved in cell proliferation [8]. Therefore, the potential 
involvement of this pathway in the context of lasofoxifene and AML could be con-
sidered in future research.

Figure  3c depicts CNR2 (cannabinoid receptor 2), a G-protein coupled receptor, 
as having the highest treatment importance. In Table  3, it takes the first rank for 
treatment importance. Connected to CNR2 is GNA15 (guanine nucleotide binding 
protein, alpha 15) which is the alpa subunit (Gα15) of the heterotrimeric G15 pro-
tein. This complex relays the signal of a G-protein coupled receptor to the activa-
tion of phospholipase C that results in an increase of the calcium ion in the cytosol 
[8, 8]. The biological functions connected to GNA15 in the subgraph are reflective 
of this function and are included in the top 20 proteins and biological functions of 
lasofoxifene (Fig. 3, Table 1). CNR2 is reported to be mainly located in immune cells 
and GNA15 has been identified to be expressed in hematopoietic stem cells [8, 8]. 
Lasofoxifene acts as an inverse agonist on the CNR2 to decrease the activity of the 
receptor [8]. Although current research does not focus on the interaction of CNR2 
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with lasofoxifene in the context of AML, Meritxell et al. demonstrated that CNR2 is 
enriched in multiple myeloid leukemia cell lines and AML blasts. Furthermore, they 
discovered that SR144528, an inverse agonist, was able to offset the migration of a 
myeloid cell line that was promoted by the activation of CNR2 by 2-arachidonoylg-
lycerol [8]. Ultimately, lasofoxifene has multiple targets through which it can cause 
an effect on AML, thus, further preclinical and clinical research is required.

Zinc & L‑glutamic acid

Zinc, a micronutrient, achieved the third rank in the top 10 and top 20 selected range of 
r(d)i  ∗ r(c)j  multiplication, whereas, L-glutamic acid, an amino acid, achieved the first rank 
in the top 50 selected range and the third rank without the influence of baseline metrics 
for r(d)i  ∗ r(c)j  multiplication. The high similarity that is observed between the diffusion 
profile of these candidates and AML suggests the importance and the profound involve-
ment of nutrients in the context of disease.

Zinc is involved in cell growth, differentiation, proliferation, and regulating apopto-
sis through enacting various functions in the cell by being incorporated in the catalytic 
region of proteins and stabilizing protein structures by interacting with zinc binding 
regions (zinc finger). Therefore, zinc partakes in a wide variety of roles by being asso-
ciated with proteins such as transcription, regulation, repairing DNA, and chromatin 
structure [8, 8].

The impact of zinc on AML and other cancers has not been largely researched. Zinc 
deficiency has been identified in AML patients and thus signifies its importance. Costa 
et al. observed the influence of zinc on the DNA damage response pathway in AML cells 
[8]. They discovered that exhausting zinc increased cell death in normal lymphocytes 
and the supplementation of zinc caused cytotoxicity in AML cells. Furthermore, supple-
menting zinc with genotoxic agents caused a protective effect against the lymphocytes 
while this caused enhancement of cytotoxicity in AML cells. These results show the pos-
sibility of using zinc in a therapeutic strategy in AML where normal cells are protected. 
Nathani et al. exemplified this combination of a drug and zinc by researching the effect 
of treating colon cancer cells with zinc and berberine. Their research demonstrated that 
the growth of cells was inhibited with zinc and lower concentrations of berberine which 
suggested a synergistic effect of this combination therapy [42]. Clusterin (CLU), which 
is indicated in the top 20 list of proteins and biological functions of zinc and ranked in 
twelfth place for the top 20 treatment importance (Table  1, Fig.  4, Table  3), has been 
implicated to play a role in the effects of this combination therapy. More specifically, 
lower levels of CLU are present upon the treatment with this combination therapy. 
Since CLU has been implicated to be involved in cell survival, when lower levels were 
detected, it resulted in the apoptosis of the cells. As a result, it can be hypothesized from 
these studies that CLU might cause similar effects when treating AML cells with a com-
bination of a drug and zinc.

TP53, a well-known tumour suppressor, attains the fourth rank in treatment impor-
tance and is present in the top 20 proteins and biological functions of zinc (Table  1, 
Fig.  4, Table  3). This transcription factor is associated with zinc because it contains a 
zinc finger. Furthermore, mutations in TP53 have been detected in AML, and mutations 
in this protein have been linked to various cancers since its functions are related to cell 
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cycle, apoptosis, and DNA repair [8]. The involvement of zinc with TP53 demonstrates 
the significance of this micronutrient in cancer.

In the subgraph for zinc (Fig. 4), there is a connection formed between zinc, APOE, 
and APP. In treatment importance, APP is ranked in the second place and APOE is 
ranked in the ninth place (Table  3). The APP protein is known to interact with zinc 
and the cleavage of APP results in the amyloid-β protein. A complex of amyloid-β pro-
tein, APOE, and zinc has been studied in the context of Alzheimer’s disease [8, 42]. Oh 
et al. observed that in the presence of sufficient amounts of zinc, APOE and amyloid-β 
formed a complex, whereas when zinc was depleted, the aggregation of the complex was 
reduced [42]. Although this complex is specifically studied in the brain, the significant 
effects of similar interactions can be researched in the future for AML.

L-glutamic acid (glutamate) is found in the glutaminolysis pathway and can be con-
verted from glutamine [8]. In AML, this pathway along with other metabolic pathways 
have been observed to be disrupted. Furthermore, AML is termed as a “glutamine 
addicted” cancer where it relies on its metabolic contribution of glutamine for prolifera-
tion and survival [42, 8]. In the subgraph, it is depicted that Myc has the highest treat-
ment importance (Fig. 5c). Wise et al. discovered that this glutamine addiction can be 
caused by Myc by triggering mitochondrial glutaminolysis. They observed that Myc was 
able to shift the glucose dependent glioma cells to glutamine dependent cells by trigger-
ing the expression of glutamine transporters which was discovered to be mediated by 
the binding of Myc to the promoter elements of the transporter genes. This resulted in 
increased expression of the transporter mRNA [42]. In the subgraph, it can be observed 
that Myc is connected to proteins that partake in mitochondrial glutaminolysis (Fig. 5). 
Therefore, this suggests a possibility for a similar mechanism to occur in AML. In addi-
tion, KRAS, which displays a high treatment importance in the subgraph, has been 
found to increase the expression of certain amino acid transporters that have resulted 
in a higher uptake of glutamine in KRAS mutated colorectal cancer cells [8] (Fig. 5c). 
As a result, the possibility of similar mechanisms occurring in AML with this mutated 
enzyme can be further researched.

Glutamate can be converted into α-ketoglutarate by the enzyme glutamate dehydroge-
nase [8]. Furthermore, α-ketoglutarate can be generated from isocitrate with the enzyme 
isocitrate dehydrogenase (IDH) which is associated with citrate metabolism [42]. In the 
subgraph, IDH1 is depicted to have a high treatment importance (Fig. 5c). It has been 
observed that 8% percent of AML cases contain mutations in IDH1 and 12% percent of 
the cases contain mutations in IDH2 [8]. IDH1 is located in the cytoplasm and IDH2 is 
located in the mitochondria. These mutations cause the generation of the oncometabo-
lite 2-hydroxyglutarate instead of generating α-ketoglutarate. The consequence of this 
alternate metabolite is that it can interfere with α-ketoglutarate dependent methylation 
of histones and DNA and inhibit the differentiation of immature hematopoietic progeni-
tor cells to mature cells. Currently, there are IDH1 and IDH2 inhibitors being clinically 
improved and developed to unblock the myeloid differentiation. Promising results have 
been demonstrated in patients containing mutations in IDH. Furthermore, there is also 
prospect in using these inhibitors alongside allogeneic hematopoietic cell transplanta-
tion for AML [42, 42].
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Biological processes in cohesive and 2‑mode communities

Understanding the major biological processes involved in the most frequently occurring 
communities of the multiscale interactome network in the top 20 proteins and biologi-
cal functions of AML and the candidates could potentially provide a starting point in 
preclinical research for discovery of mechanisms that are significant towards therapy. 
Therefore, the communities that consisted of the highest number of nodes from the top 
20 biological functions and proteins for AML and the candidates were subjected to GO 
Enrichment Analysis. The resulting top 3 biological processes are summarized based on 
the resulting biological processes and subprocesses.

Cohesive community

Fostamatinib has 10 out of 20 of its top 20 nodes in community 18 (Fig. 6a). According 
to the GO Enrichment Analysis, this 18 th ranked community is associated with regula-
tion of calcium ion transport (“negative regulation of calcium ion export across plasma 
membrane”), complex assembly in nucleus (“telomerase holoenzyme complex assem-
bly”), and regulating cell development (“regulation of type B pancreatic cell develop-
ment”). Lasofoxifene and AML have their top 20 nodes frequently located in community 
16. Lasofoxifene has 10 out of its top 20 nodes located in community 16, whereas AML 
has 11 of its top 20 nodes located in this community (Figs. 6c, 7c). The enrichment anal-
ysis showed that this community is associated with regulation of chromosome/organelle 
organization (“negative regulation of chromosome condensation), cellular response to 
organonitrogen compound and chemical stimulus (“cellular response to anisomycin”), 
and anatomical structure morphogenesis and development (“fungiform papilla forma-
tion”). Zinc has three communities that are equally frequent in its top 20 nodes. Commu-
nity 2, 8, and 23 each have 4 nodes present (Fig. 6e). Based on the enrichment analysis, 
community 2 is involved in regulation of calcium ion transport (“negative regulation of 
calcium ion export across plasma membrane”), miRNA/RNA transport and localization 
(“miRNA transport”), and regulating the cell cycle process (“regulation of G1 to G0 tran-
sition”). Community 8 is associated with microtubule-based process and organization 
(“regulation of centriole-centriole cohesion), chaperone-mediated autophagy and cel-
lular catabolic/metabolic processes (“protein targeting to lysosome involved in chaper-
one-mediated autophagy”), and regulation of oxidoreductase/catalytic activity (“positive 
regulation of superoxide dismutase activity”). Finally, community 23 for zinc is involved 
in translesion/DNA repair synthesis (“error-free translesion synthesis”), nucleotide-exci-
sion repair/DNA incision (“nucleotide-excision repair, DNA incision, 5’-to lesion”), and 
DNA strand elongation/DNA replication (“lagging strand elongation”). L-glutamic acid 
has fewer nodes from the top 20 nodes located in the selected cohesive communities. 
Therefore, community 13, which is the most frequent community, has 2 out of the top 20 
nodes of L-glutamic acid (Fig. 7a). The biological processes associated with this commu-
nity are regulation of calcium ion transport (“negative regulation of calcium ion export 
across plasma membrane”), regulation of chromosome/organelle organization (“nega-
tive regulation of chromosome condensation”), and histone deacetylation/modification 
(“histone H4 deacetylation”).
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2‑mode community

In comparison to cohesive communities, 2-mode communities contain nodes that make 
connections with nodes from other communities rather than with nodes in their com-
munities. Therefore, these biological processes could reflect similar regulatory biological 
functions for the nodes within the same community. Fostamatinib has 14 out of its top 
20 nodes in community 1 (Fig. 6b). According to the GO Enrichment Analysis, this 1 st 
ranked community is involved in complex assembly in nucleus (“telomerase holoenzyme 
complex assembly”), response to oxygen-containing compound/chemical (“response to 
hydrostatic pressure”), and anatomical structure development/morphogenesis (“trachea 
formation”). Lasofoxifene and AML have their nodes frequently located in community 
20. Lasofoxifene has 9 out of its top 20 nodes located in community 20, whereas AML 
contains 10 out of its top 20 nodes located in this community (Figs. 6d,  7d). The results 
of the enrichment analysis show that community 20 is associated with anatomical struc-
ture morphogenesis and development (“fungiform papilla formation”), regulation of 
muscle adaptation and response to stimulus (“regulation of muscle atrophy”), and mul-
ticellular organismal process and tissue/epithelium development (“hair follicle placode 
formation”). Zinc has 6 out of its top 20 nodes located in community 11(Fig. 6f ). This 11 
th ranked community is involved in response to stimulus/chemical (“response to actin-
omycin D”), organic substance metabolic process (“tetrahydrobiopterin biosynthetic 
process”), and regulation of striated/cardiac muscle cell apoptotic process (“positive reg-
ulation of cardiac muscle cell apoptotic process”). As mentioned previously, L-glutamic 
acid has fewer of its top 20 nodes located in the selected 2-mode communities. Further-
more, L-glutamic acid has three equally frequent communities; it has 2 out of its top 
20 nodes in community, 12, 13, and 17 (Fig. 7b). According to the enrichment analysis, 
community 12 is associated with positive regulation of DNA replication/DNA metabolic 
process (“positive regulation of mitochondrial DNA replication”), microtubule-based 
process and organization (“regulation of centriole-centriole cohesion), and chaperone-
mediated autophagy and cellular catabolic/metabolic processes (“protein targeting to 
lysosome involved in chaperone-mediated autophagy”). Community 13 is involved in 
regulation of chromosome/organelle organization (“negative regulation of chromosome 
condensation”), “negative regulation of calcium ion export across plasma membrane”, 
and response to chemical/stimulus (“response to fungicide”). Finally, community 17 for 
L-glutamic acid is associated with regulation of cellular component biogenesis/cellu-
lar process (“regulation of extracellular exosome assembly”), anatomical structure/tube 
development and multicellular organism development (“determination of digestive tract 
left/right asymmetry”), and endocytosis/vesicle-mediated transport (“G protein-coupled 
receptor internalization”).

Conclusions
The multiscale interactome network identified fostamatinib and lasofoxifene as 
strong candidates for the treatment of acute myeloid leukemia. In addition, zinc and 
L-glutamic acid were identified as an important micronutrient and an amino acid, 
respectively, that has a significant contribution to this disease. Literature search of 



Page 24 of 27Sivanathan and Hu ﻿BioData Mining           (2025) 18:32 

the networks resulting from the diffusion profiles of the top 4 candidates showed 
promising results that the candidates’ mechanism of actions could potentially play a 
role in the mechanism of AML. However, some proteins seemed to have more sig-
nificant functions in other tissue types. As a result, fostamatinib and lasofoxifene can 
be further researched as a structural lead compound, and the therapeutic candidates 
that are ranked further down the list can be analyzed for therapeutic potential in 
AML. Furthermore, the accuracy of the predictions can be increased by adding tissue 
specificity (e.g., “Multiscale Interactome + Uberon + Cell Ontology”) [6]. When the 
multiscale interactome network was subjected to community detection (CoDA) and 
community prioritization (CRank), top communities that could potentially be vali-
dated were identified for 2-mode and cohesive communities. Furthermore, the fre-
quency of the top 20 proteins and biological functions of the 4 candidates in the top 
communities were detected. Communities with the highest count of nodes for each 
candidate were selected for GO Enrichment Analysis. Biological processes that were 
given to the communities seemed appropriate with respect to the candidates that rep-
resented the communities. This is because L-glutamic acid, a well-known candidate, 
had a general biological process of histone deacetylation/modification for the 13 th 
ranked cohesive community and positive regulation of DNA replication/DNA meta-
bolic process in the mitochondria for the 12 th ranked 2-mode community. As men-
tioned previously, the mechanisms of L-glutamic acid are involved in metabolism of 
the mitochondria and modifications in the histones for DNA expression. However, in 
this study, only the top 20 nodes were considered, which is a significantly small num-
ber of nodes to identify significant communities. Hence, future studies can focus on 
using more than the top 100 proteins and biological functions to identify significant 
communities. In addition, along with a candidate’s treatment importance data, the 
nodes and network within these communities could be observed to identify commu-
nity specific pathways important in the context of the drug and disease. Alternatively, 
searching for “druggable communities” enriched in drug targets from the detected 
communities could be considered as another avenue for further research [8].

Repurposing various drugs for acute myeloid leukemia could occur more efficiently 
with the computational selection process of the multiscale interactome network and 
network analysis through analyzing prioritized community networks. However, the 
resistance observed in acute myeloid leukemia is caused by the development of diver-
sified leukemic stem cells during therapy. As a result, as mentioned by Van et al., the 
resistant cells within the MRD should be researched at the single-cell level to enhance 
the knowledge of resistant mechanisms and provide better therapy to AML patients 
[5]. Zitnik et  al. constructed a cell-cell similarity network from single-cell RNA 
sequencing data of neuronal cells and have detected prioritized communities using 
Crank [8]. Therefore, a future application would be to detect prioritized communities 
in cell-cell networks of AML which can then be correlated to markers and genes that 
are linked to diffusion profile/mechanism of drugs identified by the multiscale inter-
actome. This can enable the discovery of targeted therapy for specific cell types.
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