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Abstract
Background The linear mixed-effects model (LME) is a conventional parametric 
method mainly used for analyzing longitudinal and clustered data in genetic 
studies. Previous studies have shown that this model can be sensitive to parametric 
assumptions and provides less predictive performance than non-parametric methods 
such as random effects-expectation maximization (RE-EM) and unbiased RE-EM 
regression tree algorithms. These longitudinal regression trees utilize classification 
and regression trees (CART) and conditional inference trees (Ctree) to estimate the 
fixed-effects components of the mixed-effects model. While CART is a well-known 
tree algorithm, it suffers from greediness. To mitigate this issue, we used the Evtree 
algorithm to estimate the fixed-effects part of the LME for handling longitudinal and 
clustered data in genome association studies.

Methods In this study, we propose a new non-parametric longitudinal-based 
algorithm called “Ev-RE-EM” for modeling a continuous response variable using the 
Evtree algorithm to estimate the fixed-effects part of the LME. We compared its 
predictive performance with other tree algorithms, such as RE-EM and unbiased RE-EM, 
with and without considering the structure for autocorrelation between errors within 
subjects to analyze the longitudinal data in the genetic study. The autocorrelation 
structures include a first-order autoregressive process, a compound symmetric 
structure with a constant correlation, and a general correlation matrix. The real data 
was obtained from the longitudinal Tehran cardiometabolic genetic study (TCGS). The 
data modeling used body mass index (BMI) as the phenotype and included predictor 
variables such as age, sex, and 25,640 single nucleotide polymorphisms (SNPs).

Results The results demonstrated that the predictive performance of Ev-RE-EM and 
unbiased RE-EM was nearly similar. Additionally, the Ev-RE-EM algorithm generated 
smaller trees than the unbiased RE-EM algorithm, enhancing tree interpretability.
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Background
Observations in longitudinal genetic studies are typically collected from individuals 
over time to represent clustered data. More generally, clustered data reflect a hierarchi-
cal structure in which multiple observations are nested within objects (e.g., individuals 
within families). Each subject in a longitudinal setting represents a single cluster. The 
traditional parametric model for the analysis of these data sets in genetic studies is a lin-
ear mixed-effects model (LME) that simultaneously handles random effects (differences 
between objects) and fixed effects (population-level associations) [1].

The LME is widely used in genome-wide association studies (GWAS) to account for 
individual population structure and relatedness. This model helps identify genetic vari-
ants associated with complex traits by controlling for confounding factors that can lead 
to spurious associations. This model incorporates random effects to model the genetic 
relatedness among individuals, which is crucial in GWAS, where population structure 
can confound results. By accounting for these relationships, LMMs reduce false posi-
tives and improve the accuracy of association tests [2].

Assume a panel of subjects i = 1,…, n at time points t = 1,…, Ti, a vector of K-predictor 
variables xit = (xit1, . . . , xitK)′ , and a response variable yit for each observation (i, 
t). Then, the LME is defined as yit = Xitβ + Zitbi + ϵ it and yit= [yi1, ., yiTi

]T , where 
Xit is the design matrix of fixed effects, β  is the vector of fixed-effects regression coef-
ficients, and Zit is the design matrix of random effects for the ti observations at ith 
cluster. Furthermore, bi represents the random-effects regression coefficients (subject-
specific intercept) and follows the normal distribution with mean 0 and variance-cova-
riance matrix D. The ϵ it = [ ϵ i1,., ϵ iTi ]T are the error terms and independent across 
subjects. These errors follow a normal distribution with mean 0 and variance-covariance 
matrix Ri = σ 2ITi  for all i and are uncorrelated with the random effects [1]. This model, 
incorporating random intercepts to consider the within-subject correlation of response 
variables, is defined as yit = Xitβ + bi + ϵ it.

In the standard mixed-effects model, a known linear parametric function 
f (xit1, . . . , xitK) = Xβ  is assumed, along with an assumption of homoscedasticity. 
These assumptions are restrictive because using a linear form may not be the best repre-
sentation for f  in all real data applications, and there is often heteroscedasticity ( Ri ̸=
σ 2ITi ). In addition, when K is large, using all predictor variables for data modelling may 
lead to overfitting and poor prediction. Using a non-parametric approach to estimate f  
can resolve these issues. Several recent studies suggest machine-learning methods like 
tree-based algorithms can be used to estimate f  [3–6]. Tree-based algorithms are super-
vised non-parametric algorithms and are one of the most popular machine-learning 

Conclusion The results showed that the unbiased RE-EM and Ev-RE-EM algorithms 
outperformed the RE-EM algorithm. Since algorithm performance varies across 
datasets, researchers should test different algorithms on the dataset of interest and 
select the best-performing one. Accurately predicting and diagnosing an individual’s 
genetic profile is crucial in medical studies. The model with the highest accuracy 
should be used to enhance understanding of the genetics of complex traits, improve 
disease prevention and diagnosis, and aid in treating complex human diseases.
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tools for modelling and prediction [7]. These methods offer several advantages over 
parametric models, such as being easy to interpret due to the graphical display of results. 
They can handle high-dimensional and large datasets without requiring assumptions 
about the functional form of the data. Additionally, they can deal with nonlinear rela-
tionships and high-order interactions, extract homogeneous subgroups of observations, 
and are robust to missing data, outliers, and multicollinearity. Tree algorithms clas-
sify observations into finite homogeneous subgroups based on predictor variables by 
a recursive partitioning process, and then fit a constant or a model for data prediction 
within these subgroups [8–14]. Often, the target populations for assessing longitudinal 
changes in the response variable are heterogeneous. Tree-based methods offer a suitable 
approach to evaluate these changes by extracting homogeneous subgroups.

The CART algorithm is one of the best-known algorithms for data mining [15]. This 
model suffers from problems such as greediness, instability, and bias in split rule selec-
tion [16, 17]. This model generates a tree using a greedy search algorithm, which has dis-
advantages such as limiting the exploration of tree space, dependence on future splits to 
previous splits, generating optimistic error rates, and the inability of the search to find a 
global optimum [18]. CART has an instability problem because resampling or generating 
bootstrap samples from the dataset may create a tree with different splits [19]. The split-
ting method in the CART model is biased toward predictor variables with many distinct 
values [20, 21].

Given these challenges, an alternative approach to parametric models for longitudi-
nal analysis may be warranted. Therefore, this study aims to extend the mixed-effects 
model to machine-learning methods like tree algorithms. By developing a novel algo-
rithm tailored to the intricacies of longitudinal data in the context of genome associa-
tion studies, we aim to advance methodologies in the field, offering a solution that aligns 
with the complexities and nuances inherent in real-world applications. This introduction 
sets the stage for exploring the proposed Ev-RE-EM new algorithm, which combines the 
strengths of tree-based methods with the demands of longitudinal data analysis.

Various tree-based models have been proposed to address the challenges of the CART 
algorithm, and the remedial approaches include ensemble models such as random for-
ests (RF), bagging, boosting, and other ensemble methods to mitigate instability issues 
[22, 23]. To tackle biases in split rule selection, tree algorithms like CRUISE [24, 25], 
QUEST [26], GUIDE [27], conditional inference tree (ctree) [28], and LOTUS [29] have 
been introduced. Additionally, the Evtree algorithm is specifically recommended to alle-
viate the greediness problem associated with CART [18].

Recently, several studies extended the CART algorithm and its remedial methods (e.g., 
tree, GUIDE, and random forests) to deal with continuous longitudinal and clustered 
data. Segal proposed the first extension of regression tree algorithms to longitudinal 
data (1992) [30]. Then, Abdolell et al. (2002) suggested a longitudinal regression tree 
algorithm to find homogeneous subgroups based on a continuous predictor variable in 
the package longRPart [31, 32]. However, these approaches mentioned for longitudinal 
data have some disadvantages, such as the inability to deal with time-dependent predic-
tor variables, being inappropriate for unbalanced clusters ( Ti ̸= T  for all i), and being 
unable to predict the response variables for future time points for subjects in the data 
set.
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Several alternative approaches were proposed to improve the previous longitudinal 
regression tree algorithms, and in the following, we will only review the longitudinal 
regression tree algorithms available in the software. Hajjem et al. (2011, and 2014) modi-
fied the CART algorithm and RF for clustered data with continuous response variables 
using the Expectation Maximization (EM) method. Then, they proposed the mixed-
effects regression tree algorithm (MERT) and the mixed-effects random forest algorithm 
(MERF), respectively [3, 4].

Sela and Simonoff (2012) proposed a solution similar to the two approaches of Hajjem 
et al. (2011 and 2014), using CART to estimate (the population-level effects/fixed effects 
part of the mixed-effects model) to deal with the continuous longitudinal response vari-
able. They alternate between the regression tree estimation for the fixed and the ran-
dom effects estimation. Each estimate of the fixed effects plugs in the estimated random 
effects from the prior iteration and essentially assumes that random effects estimates are 
known. This strategy is reminiscent of the EM method [33], so this method is called the 
random effect-expectation maximization (RE-EM) tree and is implemented in the RE-
EMtree package [5]. However, RE-EM uses the CART algorithm, which tends to favor 
predictor variables with many unique values for splitting the tree nodes during the tree-
growing step. Fu and Simonoff (2015) suggested an unbiased RE-EM algorithm using the 
ctree algorithm instead of CART to estimate and demonstrated that it has better predic-
tion accuracy than RE-EM [6].

Loh and Zheng (2013) extended the GUIDE tree algorithm to longitudinal data and, 
like the unbiased RE-EM algorithm, solved the bias problem of the original RE-EM 
algorithm. However, it cannot incorporate time-dependent predictor variables [34]. Eo 
and Cho (2014) suggested a longitudinal tree algorithm using the GUIDE algorithm 
and mixed-effects models. Their algorithm, named MELT, handles unbalanced clusters 
and different types of predictor variables. Unlike previous longitudinal tree algorithms, 
MELT assesses trends of response variables over time within homogeneous subsets of 
subjects rather than predicting those response variables [35].

Fokkema et al. (2018) suggested the generalized linear mixed-effects model tree 
(GLMM tree) using model-based recursive partitioning (MOB) [36] for clustered or 
nested datasets [37, 38]. Their algorithm is available in the glmertree package in R soft-
ware [39]. The GLMM tree algorithm is appropriate for subgroup analysis or detecting 
the interaction effects between treatment and subgroups in clinical trials.

Longitudinal data in observational studies and clinical trials may be influenced by sev-
eral variables measured at baseline. The conventional model for analysis of this data is 
LME, which includes the baseline covariates and their interactions with the time vari-
able in the model. This analysis has some drawbacks, such as overfitting, inability to 
detect the nonlinear effects, and bias in estimators. To address this, Kundu and Harezlak 
(2019) proposed the longitudinal classification and regression tree (LongCART) under 
the ctree algorithm by Hothorn et al. [28] for analysis of longitudinal data using baseline 
covariates as partitioning variables to find the subgroups with differential longitudinal 
trajectories [40]. The LongCART algorithm is available in the LongCART package in R 
[41].

As noted previously, the CART algorithm suffers from a greediness problem (in the 
greedy search, split rules are selected forward stepwise to partition the data into groups 
recursively. The splitting rule at each internal node is chosen to maximize its child nodes’ 
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homogeneity without considering nodes further down, thus yielding only locally optimal 
trees). Currently, no algorithm addresses this issue for longitudinal and clustered data. 
This study proposes a new non-parametric longitudinal algorithm called Ev-RE-EM for 
modeling a continuous response variable using the Evtree algorithm. It compares the 
predictive performance of this proposed algorithm with previous longitudinal regression 
such as RE-EM and unbiased RE-EM on simulation and real datasets (we selected these 
algorithms because they can handle time-dependent predictor variables and the R code 
is available). The study innovation is shown graphically in Fig. 1.

Methods
The description of the real data set

The data used to motivate the new method and inform the simulation study were 
obtained from the Tehran cardiometabolic genetic study (TCGS) to assess the simul-
taneous effect of predictor variables, including sex, age, and single nucleotide polymor-
phisms (SNPs) of chromosome 16 on the body mass index (BMI) during six follow-up 
waves of TCGS [42].

We selected chromosome 16 because many studies indicated that the FTO gene on 
this chromosome was determined as a locus associated with BMI [43, 44]. Chromosome 
16 consisted of 231,501 SNPs in TCGS, 25,680 of which were multiallelic SNPs. We 

Fig. 1 Study innovation
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removed the multiallelic SNPs, leaving 205,821 biallelic SNPs. We used linkage disequi-
librium (LD) pruning based on the window size = 50 Kb (kilobase), step size = 5 Kb, and 
r2 threshold = 0.1 to select the SNPs in linkage equilibrium (LE); 25,640 SNPs remained 
in LE and were used in the real dataset.

For data modelling, the co-dominant genetic model was considered for SNP effects. 
The Beagle version 5.4 was used to impute missing genotypes [45]. The sample size con-
sisted of 3,088 unrelated participants (1,261 (40.8%) of participants were male, and 1,827 
(59.2%) were female) based on the genetic relationship matrix (GRM) with a cut point 
equal to 0.025 [46, 47] and 25,642 predictor variables (25,640 SNPs, gender, and age) to 
predict BMI as a longitudinal phenotype. This real data includes 3,088 unbalanced clus-
ters; 716, 1,094, and 1,278 were presented in four, five, and six phases of TCGS, respec-
tively. The study plan for selecting participants is shown in Fig. 2.

Estimation method of the Ev-RE-EM algorithm

The operational procedure for running the Ev-RE-EM algorithm can be summarized in 
three main steps:

1. Set the initial values of b̂i to zero.
2. Run the following steps, a and b repeatedly until the convergence of b̂i. Convergence 

is established when the likelihood or restricted likelihood change is less than a 
predetermined tolerance value (e.g., 0.001).

a) Fit a regression tree to estimate an initial approximation of f  using the Evtree 
algorithm, based on the response variable, yit − b̂i, using predictor variables, 
xit = (xit1, . . . , xitK), where i = 1,…, I and t = 1,…, Ti. This regression tree generates 

Fig. 2 The study plan for selecting the participants
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a set of predictor variables, I( xit ∈ gp) and gp ranges over all the terminal nodes of 
the tree.

b) Fit the linear mixed-effects model (LME), yit = bi +
∑

pI
(
xit ∈ gp

)
µ p + ϵ it and 

get estimates b̂i. µ p is the mean outcome for each of the terminal nodes p.

3. Use the estimated predicted response µ̂ p from the fitting of LME in step 2b instead 
of the predicted response at each tree terminal node.

The Evtree algorithm in step 2a is performed using the Evtree R package and as proposed 
by Grubinger et al. in 2011 [18]. The LME in step 2b is fitted based on the restricted 
maximum likelihood (REML) instead of maximum likelihood (ML) using the nlme pack-
age in R. Studies showed that this estimation method provides unbiased estimates com-
pared to ML.

Simulation study

We designed a simulation experiment to assess the predictive performance of the Ev-
RE-EM algorithm and other longitudinal regression trees using 100 simulated datasets 
containing 3,088 individuals. All parameters in the simulation models were derived from 
real data to ensure that the results of the simulated data analysis are comparable to those 
of real data analysis.

In this simulation design, the sex variable was generated from a Binomial distribution 
(3088, 0.5). The Age variable at the first wave was also generated using a truncated nor-
mal distribution with exact minimum = 2, maximum = 81, mean = 39.91, and standard 
deviation = 15.20 of the real age variable at wave 1. Then, age at other waves was gener-
ated as follows:

Ageit = Agei1 + (t − 1) × 3 i = 1,…, 3088, t = 2,…, 6
Finally, the phenotype, BMI at each wave was generated based on the following LME:
BMIit = 16.93 + 0.13 × Ageij + 2.35 × Sexi+ β 1SNP1 + β 2SNP2 + . . . + β 70SNP70 + γ 0i + γ it 

i = 1,…, 3088, t = 1,…, 6
Where γ 0i = N (0, 4.48) is the random intercept, γ it = N (0, 1.74) is the residual error 

at time t, and SNP1, SNP2, . . . , and SNP70 are the causal SNPs. We selected these 
SNPs from the FTO gene (5,219 SNPs) because different studies indicated this gene as a 
locus potentially affecting BMI [43, 44]. We used LD pruning on this gene based on the 
window size = 50 kb, step size = 5 kb, and r2 threshold = 0.1, and 533 SNPs remained. 
The pool of causal SNPs was determined from the LD pruned dataset with minor allele 
frequency (MAF) equal to 0.3, and 85 SNPs satisfied this condition. Fifteen SNPs from 
a pool of causal SNPs were removed to solve the multicollinearity because these SNPs 
had variance inflation factor (VIF) of more than 10 in the LME (BMI ~ Age+ Sex + SNP1 
+ SNP2 +... + SNP85+ 1|id). The VIF results before and after removing the SNPs with 
high multicollinearity are shown in Tables S1 and S2 (supplementary files), respectively. 
The steps for determining the causal SNPs to simulate the phenotype at each wave are 
depicted in Fig. 3.

The previous studies generated the regression coefficients of causal SNPs for pheno-
type simulation either from standard normal distribution or from effect sizes obtained 
from summary statistics of other studies [46]. In the present study, we generated the 
regression coefficients of 70 causal SNPs for phenotype simulation at each wave from 
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the multivariate normal distribution; the parameters of this generating distribution were 
selected based on the effect size of these SNPs on the BMI that was observed in our 
real-world data at each wave, determined through the fitting of the 70 linear regression 
models ( BMIi ∼ Agei + Sex + PC1+ PC2 + . . . + PC10+ SNPij, i = 1,2,…, 6, j = 1,2,…, 
70) at each wave of TCGS using the first 10 principal components (PC) based on the 
genetic relationship matrix to adjust the effect of population stratification. Principal 
component analysis (PCA) is a widely used statistical method in population genetics for 
inferring the genetic structure of populations. PCA identifies genetic variations among 
individuals and groups, often associated with geographic or cultural factors. By reducing 
the dimensionality of genetic data, PCA simplifies complex patterns of genetic variation 
and facilitates the interpretation of genetic relationships among populations [46, 47]. 
These effect sizes are shown in Table S3 (supplementary file). In addition, before fitting 
the linear regression model in each study phase, rank-based inverse normal transforma-
tion (RINT) was used for BMI normalization [48]. The density plots for BMI phenotype 
before and after using RINT in each study phase are shown in Figures S1 to S6 (supple-
mentary files).

The trend plot of effect sizes, provided in Figure S7 (supplementary file), suggests that 
these SNPs have different effects over time. This variability led us to use different regres-
sion coefficients for causal SNPs to simulate BMI at each wave. The correlation plot 
between the causal SNPs for six waves is shown in Figure S8 (supplementary file); the 
correlation between the causal SNPs appears to decrease over time. Furthermore, using 
the multivariate normal distribution to generate the regression coefficients of causal 
SNPs for BMI simulation at each wave of the study appears reasonable.

Fig. 3 The study plan for selecting the causal single nucleotide polymorphisms (SNPs) to simulate the body mass 
index (BMI)
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Finally, we have a mean vector µ (70× 6) × 1 (the long format of effect sizes in Table 
S3 is considered as the mean vector) and variance-covariance matrix Ʃ (70 × 6) × (70 × 6) of 
the multivariate normal distribution to generate the regression coefficients of the SNPs 
to simulate the phenotype at each wave. We considered a block diagonal matrix for Σ, 
where each block belongs to a specific SNP and is based on the variance-covariance 
matrix of effect sizes for the six waves. The block diagonal matrix for Σ is defined as 
follows:

The matrix Ri (variance-covariance matrix of individual-level noise in LME) can be 
diagonal when we are assuming independence within each individual. However, a non-
diagonal matrix might better represent the noise, as the errors might be correlated over 
time within an individual. If this is the case, this matrix can have different structures, 
such as the first-order autoregressive process, compound symmetry structure with a 
constant correlation, or a general correlation matrix (unstructured). These structures are 
shown in the supplementary file for a hypothetical longitudinal data set with three sub-
jects (subject 1: present at 4-time points, subject 2: present at 2-time points, and subject 
3: present at 3-time points).

Criteria for comparing the predictive performance of longitudinal regression tree 

algorithms

In the present study, we compared the predictive performance of longitudinal regression 
tree algorithms under different covariance patterns in the simulated and real datasets. 
We used the mean of square error (MSE) of residuals, mean absolute difference (MAD), 
and deviance to evaluate the predictive performance of different longitudinal regression 
tree algorithms.

MSE =
∑

n
i=1

∑
T
t=1(yit − ŷit)2

n × T

MAD =
∑

n
i=1

∑
T
t=1 |yit − ŷit|

n × T

Deviance = −2 × log − likelihood

yit and ŷit indicate the observed and predicted response variables for tth observation in 
the ith individual in the test dataset, respectively.

We anticipated that the best performers would have a smaller MSE, MAD, and devi-
ance. In both simulation and real datasets, the first 70% of observations for I subjects 
were used as a training data set, and the remaining 30% were considered the testing set.
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Software programs

The R 4.1.0 software was used to code the Ev-RE-EM algorithm, fit other longitudinal 
regression tree algorithms and longitudinal GWAS, and simulate the data. The RE-EM 
longitudinal tree algorithm was fitted using the RE-EMtree package [49]. The R code was 
used to fit the unbiased RE-EM tree algorithm, which is available by the  h t t p : /  / p e o p  l e . s t 
e  r n . n  y u . e d  u / j s i  m o n o f /  u n b i  a s e d R E - E M link. BMI phenotype normalization based on the 
RINT method was done with the RNOmni package [50], and the GMMAT package was 
used to run longitudinal GWAS [51].

In addition, we employed Plink 1.9 software  (   h t t p : / / p n g u . m g h . h a r v a r d . e d u / p u r c e l l / p l 
i n k /     ) for data quality control and LD calculation [52]. GRM and principal components 
were calculated to adjust for population classification using the rigorous GCTA (version 
1.94.0beta) software ( h t t p s :  / / y a n  g l a b . w  e s t l  a k e . e  d u . c n  / s o f t w  a r e /  g c t a /) [46]. All analyses 
were conducted in a robust Linux environment and with the versatile Bash Scripting 
language. The R code for running the Ev-RE-EM algorithm and simulating the data is 
provided in the supplementary files.

Results
We conducted a GWAS with BMI as a longitudinal phenotype using 10,945,256 
genome-wide SNPs after quality control in TCGS. We used the generalized linear mixed 
model association tests (GMMAT) to find the associated SNPs by adjusting age, sex, and 
the first ten principal components to account for the population stratification [53]. The 
RINT was used for BMI normalization. The Manhattan plot and quantile-quantile plot 
of this analysis are indicated in Figs. 4 and 5, respectively.

The autocorrelation test for different autocorrelation structures was evaluated in the 
RE-EM tree algorithm using the likelihood ratio (LR) test, and the tree without an auto-
correlation structure was considered the null hypothesis. This test demonstrated that 
there was no statistical difference between the compound symmetric structure with a 
constant correlation and.

autocorrelation structure under the RE-EM algorithm (P = 0.999). Additionally, there 
was a statistical difference between the first-order autoregressive process and the gen-
eral correlation structure with σ 2ITi  autocorrelation structure (P < 0.001 and P < 0.001, 
respectively). Therefore, in this study, fitting longitudinal tree algorithms should include 
the autocorrelation structure of the first-order autoregressive process and the general 
correlation structure between the within-subject errors.

As represented in Table 1, the results of the real data analysis indicated that the RE-EM 
algorithm with σ 2ITi  and a compound symmetric structure with a constant correlation 
as the autocorrelation structures have similar and better performance compared to the 
use of other autocorrelation structures between the errors within the subjects. Addi-
tionally, using a first-order autoregressive process as the autocorrelation structure in 
the RE-EM algorithm shows the weakest predictive performance (Table 1). The RE-EM 
algorithm with σ 2ITi  or a compound symmetric structure with a constant correlation 
as an autocorrelation structure has the best performance.

As shown in Table 1, the predictive performance of unbiased RE-EM and Ev-RE-EM 
is better under σ 2ITi  and a compound symmetric structure with a constant. Con-
versely, these algorithms showed the weakest predictive performance under the first-
order autoregressive process as the autocorrelation structure. The tree structures of 

http://people.stern.nyu.edu/jsimonof/unbiasedRE-EM
http://people.stern.nyu.edu/jsimonof/unbiasedRE-EM
http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
https://yanglab.westlake.edu.cn/software/gcta/
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unbiased RE-EM and Ev-RE-EM algorithms with the best predictive performance are 
shown in Figs.  6, 7, and 8. These algorithms extracted the homogeneous subgroups 
of observations. The low-risk subgroups based on the unbiased RE-EM, and Ev-RE-
EM algorithms are individuals aged ≤ 8 years and ≤ 11 years, respectively. In addition, 
the women aged > 39, rs112865060= {CC, CG}, and rs11075406 = CC are identified as 
high-risk subgroups by the unbiased RE-EM tree algorithm (Fig. 6). On the other hand, 
the high-risk subgroups based on the Ev-RE-EM tree algorithm are women aged > 39, 
rs75740786 = GA, rs917188199 = AT, and rs184919069 = GC (Fig. 8). tree sizes of RE-EM, 
unbiased RE-EM, and Ev-RE-EM are 149, 58, and 47, respectively. Thus, Ev-RE-EM gen-
erated a smaller, more interpretable tree.

The simulation study results indicated that three longitudinal regression tree algo-
rithms under the AR (1) autocorrelation structure have shown poor predictive perfor-
mance. On the other hand, the predictive performance of these algorithms under the 
autocorrelation structure, such as σ 2ITi  and a compound symmetric structure with a 
constant correlation is almost similar (Table 2).

Discussion
The conventional LME model for analyzing longitudinal or clustered data relies on a 
parametric linear function that requires a series of assumptions, limiting its applicabil-
ity in real-world scenarios [5]. Thus, proposing an alternative to parametric models for 

Fig. 4 The Manhattan plot of the BMI as a longitudinal phenotype by adjusting age, sex, and the first 10 principal 
components in the TCGS using GMMAT
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longitudinal data analysis is essential. Given the advantages of tree-based methods over 
parametric models, extending tree algorithms for longitudinal data can address the chal-
lenges of analyzing high-dimensional longitudinal data.

Several tree algorithms have been developed to analyze longitudinal or clustered data 
by extending the well-known CART algorithm [3–6, 35, 40, 54]. Additionally, further 
refinements have been proposed to address the disadvantages of the CART algorithm. 
One disadvantage of the CART method is its greedy approach, which limits the explo-
ration of tree space, induces dependence of future splits on previous splits, generates 

Table 1 The predictive performance of the longitudinal regression tree algorithms with and without 
the autocorrelation structure between within-subject errors for predicting the BMI in TCGS
Longitudinal regression tree algorithm Autocorrelation structure MSE MAD Deviance
RE-EM σ 2ITi

5.323 1.728 52094.98

AR (1) 6.330 1.880 51094.46
CS 5.323 1.728 52094.98
C 5.538 1.767 51483.54

Unbiased RE-EM σ 2ITi
4.023 1.113 51017.86

AR (1) 5.028 1.195 50236.74
CS 4.023 1.113 51017.86
C 4.155 1.165 51211.12

Ev-RE-EM σ 2ITi
4.073 1.117 51021.67

AR (1) 5.058 1.20 50256.91
CS 4.073 1.117 51021.67
C 4.175 1.169 51218.14

σ 2IT i
: variance-covariance diagonal matrix of errors, AR (1): the first-order  autoregressive process, CS: compound 

symmetry structure with a constant correlation, and C: general correlation matrix (unstructured)

Fig. 5 The quantile-quantile plot of the BMI as a longitudinal phenotype by adjusting age, sex, and the first 10 
principal components in the TCGS using GMMAT
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optimistic error rates, and prevents the search from finding a global optimum [18]. To 
address these issues, Bayesian tree approaches [55–62] and the Evtree algorithm [18] 
were proposed as solutions to the limitations of the CART algorithm.

In this study, we address the need for a solution to the greedy problem in analyzing 
longitudinal or clustered data in GWAS-based studies. Recognizing the significance of 
this issue, we propose a novel non-parametric algorithm, Ev-RE-EM, which utilizes the 
Evtree algorithm to estimate the fixed part of the LME model for high-dimensional lon-
gitudinal data analysis.

This new longitudinal regression tree algorithm was used for the first time in longitu-
dinal genome-wide association studies (GWAS) to investigate genetic markers affecting 
BMI as a longitudinal phenotype and to predict this phenotype in TCGS. The predic-
tive performance of this algorithm was compared with previously proposed longitudinal 
regression tree algorithms such as RE-EM and unbiased RE-EM, under different auto-
correlation structures (e.g., first-order autoregressive process, compound symmetric 

Fig. 7 The continuation of the tree structure in Fig. 6

 

Fig. 6 The tree structure of the unbiased RE-RM tree algorithm for predicting the BMI in TCGS (green color: the 
low-risk subgroup and red color: the high-risk subgroup)
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structure, general correlation matrix) using criteria such as MSE, MAD, and deviation, 
in both real and simulated datasets.

The predictive performance of the longitudinal regression tree algorithms on the real 
dataset showed that the RE-EM, unbiased RE-EM, and Ev-RE-EM algorithms under 
σ 2ITi  and a compound symmetric structure with a correlation constant have similar 
performance, as the LR test did not show a statistically significant difference between 
these two structures under the RE-EM model. Additionally, the predictive performance 
of the longitudinal tree algorithms under the different structures mentioned was similar 
in both real and simulated datasets.

The results from both real and simulated datasets showed that the unbiased RE-EM 
and Ev-RE-EM algorithms perform better than the RE-EM algorithm, likely due to 
the strategy of the RE-EM algorithm being based on the CART algorithm, which has 
weaknesses such as biased splits and greedy problems. The predictive performance of 

Table 2 The predictive performance of the longitudinal regression tree algorithms with and without 
the autocorrelation structure between within-subject errors in the simulated dataset
Longitudinal regression tree algorithm Autocorrelation structure MSE MAD Deviance
RE-EM σ 2ITi

0.3727947 0.4524195 28636.44

AR (1) 24.52032 3.943993 29912.64
CS 0.3782275 0.4584203 28750.63

RE-EM Unbiased σ 2ITi
0.2657871 0.4305183 25739.56

AR (1) 17.03199 2.813750 27807.73
CS 0.2669871 0.4354071 25946.75

Ev-RE-EM σ 2ITi
0.2735940 0.4317192 25847.34

AR (1) 17.57367 2.835460 27821.97
CS 0.2747831 0.4384521 25997.92

σ 2IT i
: variance-covariance diagonal matrix of errors, AR (1): first-order autoregressive process, CS: compound symmetry 

structure with a constant correlation (unstructured)

Fig. 8 The tree structure of the Ev-RE-RM tree algorithm for predicting the BMI in TCGS (green color: the low-risk 
subgroup and red color: the high-risk subgroup
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unbiased RE-EM and Ev-RE-EM was almost similar on real and simulated datasets. 
However, Ev-RE-EM explored the tree space more thoroughly, creating a smaller, more 
interpretable tree. Moreover, this method randomly selects splitting variables and rules, 
eliminating bias in selecting splitting rules. Therefore, compared to the RE-EM algo-
rithm, Ev-RE-EM is a good alternative for longitudinal data analysis.

Additionally, the simulation study results showed that longitudinal regression tree 
algorithms do not converge under the general correlation structure. This non-conver-
gence is common under this structure because it requires a general correlation matrix 
and converges with difficulty.

The result of the longitudinal GWAS for the BMI phenotype showed no significant 
SNP with a p-value less than 10− 8. Longitudinal tree algorithms can be used to deter-
mine effective SNPs for longitudinal phenotypes of interest. Unlike GWAS, these algo-
rithms do not have a univariate view and can discover interactions between SNPs. The 
target population is usually heterogeneous when examining longitudinal phenotype 
changes. Thus, it is essential to extract homogeneous subgroups using tree algorithms, 
as the values of predictions or estimates differ between homogeneous subgroups [40]. 
Furthermore, GWAS results depend on sample size, and the sample size used in this 
study is small compared to other GWAS. Thus, tree algorithms, unaffected by sample 
size, can be a good alternative.

Despite the strengths of this study, a weakness is that more research is needed to 
confirm the findings, as no similar studies have been done in the Iranian population to 
determine effective SNPs on BMI longitudinal phenotype. However, the results did show 
that women are in the high-risk subgroup for obesity, a finding supported by other stud-
ies [63, 64]. Another weakness is that using longitudinal regression tree algorithms with 
SNPs of all autosomal chromosomes requires a long time to run.

Capitaine et al. (2019) extended random forests to analyze high-dimensional longi-
tudinal datasets [54]. They used the semi-parametric stochastic mixed effects model to 
account for the correlation structure between repeated measurements instead of the 
LME model. They proposed stochastic RE-EM (SRE-EM), SRE-EMforest, stochastic 
mixed effects regression trees (SMERT), and stochastic mixed effects random forests 
(SMERF). These algorithms are available in the LongituRF package in R. We also used 
the algorithms in the LongituRF package and boosted multivariate trees [65] for data 
analysis but these algorithms could not run on high-dimensional data due to difficulties 
in achieving convergence under our current computational framework. Louis Capitaine 
et al. (2021) ran longitudinal random forests to analyze high-dimensional data contain-
ing 20,000 gene transcripts [54]. These predictor variables were continuous, but in our 
study, the SNPs are qualitative variables, which causes a computational burden.

The present study has some limitations, such as the inability to analyze whole genome 
data and the time computationally required by the RE-EM algorithm, which is smaller 
than that of unbiased RE-EM and Ev-RE-EM. On the other hand, the RE-EM algorithm 
suffers from problems such as biased splits and greedy search. So, future works are pro-
posed to improve longitudinal tree-based methods for analyzing whole genome data.

Some decision trees, such as CART [15], CRUISE [24, 25], QUEST [26], and GUIDE 
[27], can deal with missing data. Among longitudinal tree algorithms, only RE-EM can 
deal with missing values in the response variables [5]. There is no remedial in other lon-
gitudinal regression tree algorithms to impute these values, which is a limitation of the 
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present study. We propose that future work be done to solve this problem. Jahangiri et 
al. (2023) assessed a wide range of missing imputation approaches in longitudinal data, 
and researchers can use these approaches before using the unbiased RE-EM and EV-RE-
EM algorithms to analyze longitudinal data [66]. On the other hand, there are no miss-
ing values in the SNPs because they are obtained from the imputation of the chip dataset 
of the genetic study.

In addition, future research can extend other regression tree algorithms under the 
framework of Capitaine et al. (2019) for longitudinal data analysis. Stegmann et al. (2018) 
extended the longRPart algorithm and suggested a nonlinear longitudinal recursive par-
titioning (nLRP) to predict change trajectories using the nonlinear LME based on clus-
ter-level covariates [67]. This algorithm is available in longRPart2. Future research also 
can focus on extending nonlinear LME under the framework of the conditional infer-
ence tree by Hothorn et al. (2006) [28].

Nestler and Humberg (2021) combined an extended mixed-effect location scale 
(E-MELS) with the CART algorithm of Breiman et al. (1984) to propose E-MELS trees 
for hierarchical data analysis [68]. The code for this algorithm can be found at  h t t p s : / / o s 
f . i o / 5 3 s c f /     . Future research can work on extending E-MELS trees based on different tree 
algorithms.

Conclusion
The results showed that the unbiased RE-EM and Ev-RE-EM algorithms outperformed 
the RE-EM algorithm. Additionally, the Ev-RE-EM algorithm produced smaller and 
more interpretable trees by uncovering more tree structures. Since algorithm perfor-
mance varies across datasets, researchers should test different algorithms on the dataset 
of interest and select the best-performing one.

Accurately predicting and diagnosing an individual’s genetic profile is crucial in medi-
cal studies. The model with the highest accuracy should be used to enhance understand-
ing of the genetics of complex traits, improve disease prevention and diagnosis, and aid 
in treating complex human diseases. Identifying genetic factors, which are immutable 
through therapeutic intervention, can help screen and prevent at-risk individuals. This 
also enables effective, personalized treatment based on individuals’ genetic conditions at 
the clinical level.

Abbreviations
BMI  Body mass index
SNPs  Single nucleotide polymorphisms
GWAS  Genome-wide association studies
LME  Linear mixed-effects model
RE  EM-Random effects expectation-maximization
TCGS  Tehran cardiometabolic genetic study

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13040-025-00437-w.

Supplementary Material 1

Acknowledgements
The authors would like to express their gratitude to the staff and participants in the TCGS project.

Author contributions
Conceptualization: Mina Jahangiri and Anoshirvan Kazemnejad; Formal analysis: Mina Jahangiri, Mahdi Akbarzadeh, and 
Shayan Mostafaei; Methodology: Mina Jahangiri, Mahdi Akbarzadeh, Anoshirvan Kazemnejad, Maryam S Daneshpour, 

https://osf.io/53scf/
https://osf.io/53scf/
https://doi.org/10.1186/s13040-025-00437-w


Page 17 of 18Jahangiri et al. BioData Mining           (2025) 18:22 

and Davood Khalili; Medical consultant: Maryam S Daneshpour; Software and data simulation: Mina Jahangiri, Keith 
Goldfeld, Mahdi Akbarzadeh, and Mehdi Momen; Writing-original draft: Mina Jahangiri and Keith Goldfeld; Supervision: 
Anoshirvan Kazemnejad and Mahdi Akbarzadeh; All authors reviewed and accepted the manuscript.

Funding
No funding was received for this study.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
The ethical committee approved this study at the Research Institute for Endocrine Sciences, Shahid Beheshti University 
of Medical Sciences (Research Approval Code: 28778 & Research Ethical Code: IR.SBMU.ENDOCRINE.REC.1400.084). All 
participants provided written informed consent. This study was performed according to the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 8 January 2025 / Accepted: 3 March 2025

References
1. Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis: Wiley. 2012.
2. Jiang L, Zheng Z, Qi T, Kemper KE, Wray NR, Visscher PM et al. A resource-efficient tool for mixed model association analy-

sis of large-scale data. 2019;51(12):1749–55.
3. Hajjem A, Bellavance F, Larocque D. Mixed effects regression trees for clustered data. Stat Probab Lett. 2011;81(4):451–9.
4. Hajjem A, Bellavance F, Larocque D. Mixed-effects random forest for clustered data. J Stat Comput Simul. 

2014;84(6):1313–28.
5. Sela RJ, Simonoff JS. RE-EM trees: a data mining approach for longitudinal and clustered data. Mach Learn. 

2012;86(2):169–207.
6. Fu W, Simonoff JS. Unbiased regression trees for longitudinal and clustered data. Comput Stat Data Anal. 2015;88:53–74.
7. Geurts P, Irrthum A, Wehenkel L. Supervised learning with decision tree-based methods in computational and systems 

biology. Mol Biosyst. 2009;5(12):1593–605.
8. De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. 

Ecology. 2000;81(11):3178–92.
9. Lemon SC, Roy J, Clark MA, Friedmann PD, Rakowski W. Classification and regression tree analysis in public health: meth-

odological review and comparison with logistic regression. Ann Behav Med. 2003;26(3):172–81.
10. Feldesman MR. Classification trees as an alternative to linear discriminant analysis. Am J Phys Anthropology: Official Publi-

cation Am Association Phys Anthropologists. 2002;119(3):257–75.
11. Malehi AS, Jahangiri M. Classic and bayesian Tree-Based methods. Enhanced Expert Syst. 2019:27.
12. Jahangiri M, Khodadi E, Rahim F, Saki N, Saki Malehi A. Decision-tree‐based methods for differential diagnosis of β‐thalas-

semia trait from iron deficiency anemia. Expert Syst. 2017;34(3):e12201.
13. Rahim F, Kazemnejad A, Jahangiri M, Malehi AS, Gohari K. Diagnostic performance of classification trees and hematologi-

cal functions in hematologic disorders: an application of multidimensional scaling and cluster analysis. BMC Med Inf Decis 
Mak. 2021;21(1):1–13.

14. Jahangiri M, Rahim F, Saki N, Saki Malehi A. Application of Bayesian Decision Tree in Hematology Research: Differential 
Diagnosis of β-Thalassemia Trait from Iron Deficiency Anemia. Computational and Mathematical Methods in Medicine. 
2021;2021.

15. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees: CRC. 1984.
16. Gray JB, Fan G. Classification tree analysis using TARGET. Comput Stat Data Anal. 2008;52(3):1362–72.
17. Fan G, Gray JB. Regression tree analysis using TARGET. J Comput Graphical Stat. 2005;14(1):206–18.
18. Grubinger T, Zeileis A, Pfeiffer K-P, evtree. Evolutionary learning of globally optimal classification and regression trees in R. 

Working Papers in Economics and Statistics. 2011.
19. Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci. 

2001;16(3):199–231.
20. Loh WY. Tree-structured classifiers. Wiley Interdisciplinary Reviews: Comput Stat. 2010;2(3):364–9.
21. Loh WY. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Min Knowl Discovery. 2011;1(1):14–23.
22. Breiman L. Bagging predictors. Mach Learn. 1996;24(2):123–40.
23. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
24. Kim H, Loh W-Y. Classification trees with bivariate linear discriminant node models. J Comput Graphical Stat. 

2003;12(3):512–30.
25. Kim H, Loh W-Y. Classification trees with unbiased multiway splits. J Am Stat Assoc. 2001;96(454):589–604.
26. Loh W-Y, Shih Y-S. Split selection methods for classification trees. Statistica sinica. 1997:815–40.
27. Loh W-Y. Improving the precision of classification trees. Annals Appl Stat. 2009:1710–37.
28. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional inference framework. J Comput Graphical 

Stat. 2006;15(3):651–74.



Page 18 of 18Jahangiri et al. BioData Mining           (2025) 18:22 

29. Chan K-Y, Loh W-Y. An algorithm for Building accurate and comprehensible logistic regression trees. J Comput Graphical 
Stat. 2004;13(4):826–52.

30. Segal MR. Tree-structured methods for longitudinal data. J Am Stat Assoc. 1992;87(418):407–18.
31. Abdolell M, LeBlanc M, Stephens D, Harrison R. Binary partitioning for continuous longitudinal data: categorizing a prog-

nostic variable. Stat Med. 2002;21(22):3395–409.
32. Stewart S, Abdolell M, Stewart MS. Package ‘longRPart’.
33. Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982:963–74.
34. Loh W-Y, Zheng W. Regression trees for longitudinal and multiresponse data. Annals Appl Stat. 2013;7(1):495–522.
35. Eo S-H, Cho H. Tree-structured mixed-effects regression modeling for longitudinal data. J Comput Graphical Stat. 

2014;23(3):740–60.
36. Zeileis A, Hothorn T, Hornik K. Model-based recursive partitioning. J Comput Graphical Stat. 2008;17(2):492–514.
37. Fokkema M, Edbrooke-Childs J, Wolpert M. Generalized linear mixed-model (GLMM) trees: A flexible decision-tree method 

for multilevel and longitudinal data. Psychother Res. 2021;31(3):329–41.
38. Fokkema M, Smits N, Zeileis A, Hothorn T, Kelderman H. Detecting treatment-subgroup interactions in clustered data with 

generalized linear mixed-effects model trees. Behav Res Methods. 2018;50(5):2016–34.
39. Fokkema M, Zeileis A, Fokkema MM. Package ‘glmertree’. 2019.
40. Kundu MG, Harezlak J. Regression trees for longitudinal data with baseline covariates. Biostatistics Epidemiol. 

2019;3(1):1–22.
41. Kundu MG, Kundu MMG. Package ‘LongCART’. 2022.
42. Daneshpour MS, Akbarzadeh M, Lanjanian H, Sedaghati-Khayat B, Guity K, Masjoudi S, et al. Cohort profile update: Tehran 

cardiometabolic genetic study. Eur J Epidemiol. 2023;38(6):699–711.
43. Peng S, Zhu Y, Xu F, Ren X, Li X, Lai M. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Med. 2011;9:1–15.
44. Liu C, Mou S, Cai Y. FTO gene variant and risk of overweight and obesity among children and adolescents: a systematic 

review and meta-analysis. PLoS ONE. 2013;8(11):e82133.
45. Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. Am J Hum 

Genet. 2018;103(3):338–48.
46. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 

2011;88(1):76–82.
47. Jiang L, Zheng Z, Qi T, Kemper KE, Wray NR, Visscher PM, et al. A resource-efficient tool for mixed model association analy-

sis of large-scale data. Nat Genet. 2019;51(12):1749–55.
48. McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. Operating characteristics of the rank-based inverse normal transformation 

for quantitative trait analysis in genome-wide association studies. Biometrics. 2020;76(4):1262–72.
49. Sela R, Simonoff J, Sela MR, Suggests A. Package ‘REEMtree’. 2023.
50. McCaw Z. RNOmni: rank normal transformation omnibus test. R Package. 2019;861.
51. Chen H, Conomos M, Pham D, Gilly A, Gentleman R, Ihaka R. Package ‘GMMAT’. 2023.
52. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association 

and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
53. Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, et al. Control for population structure and relatedness for binary 

traits in genetic association studies via logistic mixed models. Am J Hum Genet. 2016;98(4):653–66.
54. Capitaine L, Genuer R, Thiébaut RJ. Random forests for high-dimensional longitudinal data. Smimr. 2021;30(1):166–84.
55. Chipman HA, George EI, McCulloch RE. Bayesian treed models. Mach Learn. 2002;48(1–3):299–320.
56. Chipman H, McCulloch RE. Hierarchical priors for bayesian CART shrinkage. Stat Comput. 2000;10(1):17–24.
57. O’Leary RA, Murray JV, Low Choy SJ, Mengersen KL. Expert elicitation for bayesian classification trees. J Appl Probab Stat. 

2008;3(1):95–106.
58. O’Leary RA. Informed statistical modelling of habitat suitability for rare and threatened species. Queensland University of 

Technology; 2008.
59. Denison DG, Mallick BK, Smith AF. A bayesian CART algorithm. Biometrika. 1998;85(2):363–77.
60. Chipman H, George E, McCulloch R. Bayesian treed generalized linear models. Bayesian Stat. 2003;7:323–49.
61. Chipman HA, George EI, McCulloch RE. Bayesian CART model search. J Am Stat Assoc. 1998;93(443):935–48.
62. Wu Y, Tjelmeland H, West M, Bayesian CART. Prior specification and posterior simulation. J Comput Graphical Stat. 

2007;16(1):44–66.
63. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and National prevalence of over-

weight and obesity in children and adults during 1980–2013: a systematic analysis for the global burden of disease study 
2013. Lancet. 2014;384(9945):766–81.

64. Abarca-Gómez L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Acuin C, et al. Worldwide trends in body-
mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based 
measurement studies in 128· 9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.

65. Pande A, Li L, Rajeswaran J, Ehrlinger J, Kogalur UB, Blackstone EH, et al. Boosted Multivar Trees Longitud Data. 
2017;106:277–305.

66. Jahangiri M, Kazemnejad A, Goldfeld KS, Daneshpour MS, Mostafaei S, Khalili D et al. A wide range of missing imputation 
approaches in longitudinal data: a simulation study and real data analysis. 2023;23(1):161.

67. Stegmann G, Jacobucci R, Serang S, Grimm KJJM. Recursive Partitioning Nonlinear Models Change. 2018;53(4):559–70.
68. Nestler S, Humberg SJ. A Lasso and a regression tree mixed-effect model with random effects for the level, the residual 

variance, and the autocorrelation. 2022;87(2):506–32.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Leveraging mixed-effects regression trees for the analysis of high-dimensional longitudinal data to identify the low and high-risk subgroups: simulation study with application to genetic study
	Abstract
	Background
	Methods
	The description of the real data set
	Estimation method of the Ev-RE-EM algorithm
	Simulation study
	Criteria for comparing the predictive performance of longitudinal regression tree algorithms
	Software programs

	Results
	Discussion
	Conclusion
	References


