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Abstract
Background The accurate identification of molecular subtypes in digestive tract 
cancer (DTC) is crucial for making informed treatment decisions and selecting 
potential biomarkers. With the rapid advancement of artificial intelligence, various 
machine learning algorithms have been successfully applied in this field. However, the 
complexity and high dimensionality of the data features may lead to overlapping and 
ambiguous subtypes during clustering.

Results In this study, we propose GDEC, a multi-task generative deep neural network 
designed for precise digestive tract cancer subtyping. The network optimization 
process involves employing an integrated loss function consisting of two modules: 
the generative-adversarial module facilitates spatial data distribution understanding 
for extracting high-quality information, while the clustering module aids in identifying 
disease subtypes. The experiments conducted on digestive tract cancer datasets 
demonstrate that GDEC exhibits exceptional performance compared to other 
advanced methodologies and can separate different cancer molecular subtypes that 
possess both statistical and biological significance. Subsequently, 21 hub genes related 
to pan-DTC heterogeneity and prognosis were identified based on the subtypes 
clustered by GDEC. The following drug analysis suggested Dasatinib and YM155 as 
potential therapeutic agents for improving the prognosis of patients in pan-DTC 
immunotherapy, thereby contributing to the enhancement of cancer patient survival.

Conclusions The experiment indicate that GDEC outperforms better than other 
deep-learning-based methods, and the interpretable algorithm can select biologically 
significant genes and potential drugs for DTC treatment.

Key Points
 • The proposed competitive Graph-based Deep Generative Neural Network 

(GDEC) presents a novel approach for cancer subtyping, enabling the 
identification of both statistically and biologically significant cancer subtypes.

 • Based on the subtypes clustered by GDEC, we have identified 21 hub genes 
that are significantly associated with the heterogeneity and prognosis of pan-
digestive tract cancer.

 • The drug analysis suggested Dasatinib and YM155 as potential therapeutic 
agents for improving the prognosis of patients in pan-digestive tract cancer 
immunotherapy.
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Introduction
The digestive tract cancer (DTC) heterogeneity driven by multiple genomic alterations, 
is a major obstacle that hampers the effectiveness of therapies for patients [1, 2]. Identi-
fying cancer subtypes by unsupervised clustering methods can offer valuable insights to 
guide clinical decision-making and facilitate the identification of potential biomarkers 
[3]. According to the global cancer report, DTCs account for 25.8% of new cases and 
contribute to 35.4% of deaths worldwide in 2022 [4]. Accurate subtyping of cancer can 
provide valuable insights for designing treatment strategies and developing therapeu-
tics [5, 6]. In this study, we investigate the pan-DTC subtype analysis by integrating six 
types of cancers (colon, esophageal, liver, pancreatic, rectum, and stomach) to identify 
molecular subtypes, recognize latent cancer-related biomarkers, and discover the poten-
tial drugs for DTC treatment.

In the original study, traditional machine learning techniques such as k-means and 
hierarchical clustering were employed to discern similarities and dissimilarities among 
cancer patients with different molecular subtypes. With advancements in sequencing 
technologies, there is an increasing demand to cluster high-throughput patient features 
for disease subtyping. Early studies primarily relied on dimensionality reduction algo-
rithms to reconstruct the low-dimensional representation, which was subsequently fol-
lowed by conventional clustering algorithms. For instance, Alex employed the principal 
component analysis (PCA) to extract gene information for breast cancer subtype cluster-
ing [7]; CIDR proposed by Lin quantified dissimilarity between cells based on Euclidean 
distance between the high-dimensional gene expression, and then performed hierarchi-
cal clustering to detect disease subtypes [8]; Becht designed a nonlinear dimensionality 
reduction method based on uniforming manifold approximation to analyze single-cell 
data of the cancers [9].

One limitation of these methods is that the majority of these algorithms employ lin-
ear transformation for data dimensionality reduction, which may not adequately address 
complex gene features for extracting the effective information to distinguish disease sub-
types residing in non-linear manifolds within a high-dimensional space [3]. In recent 
studies, various deep learning (DL) -based technologies have been employed to address 
this tissue [10, 11]. Chaudhary initially utilized the Autoencoder for extracting disease 
multi-omics features in hepatocellular carcinoma survival analysis [12]. In Guo’s work 
on cancer subtyping, the denoising Autoencoder was adopted as a replacement for the 
Autoencoder to enhance model robustness against the noise [13]. Yang designed Sub-
type-GAN to enhance the learning of diverse distribution knowledge about patients by 
leveraging the Gaussian mixture model [14]. Han proposed a data augmentation-based 
contrastive learning network for integrating single cell RNA-seq data in disease clus-
tering [15]. To address the increasing dimensionality of gene features, Cheng proposed 
scGAC, which integrates gene connection information using a graph-based autoencoder 
to extract crucial patient information for cancer survival analysis [16].

However, in these DL-based methods, the representation learning module and clus-
tering module are employed as separate components, which may result in suboptimal 
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clustering outcomes because the deep neural network cannot benefit from mutual task 
optimization. To address this issue, Guo proposed IDEC, a multi-task deep neural net-
work that combines a local structure preservation module with a cluster module [17]. 
Chen developed a semi-supervised learning deep neural network for cancer subtyping 
[3]. However, the reliance on labeled samples in this framework restricts its applicabil-
ity. In a recent study, Gan employed a self-supervised learning framework to integrate 
the data augmentation strategy with the deep clustering multi-task deep neural network 
[18]. Despite advancements in meticulously designed unsupervised clustering methods 
for capturing tumor heterogeneity, cancer clustering remains an exceedingly challenging 
task due to computational issues arising from high-dimensional omics data, which can 
lead to ambiguous and overlapping patient subtypes.

To address the limitation caused by the high-dimensional and complex cancer data, 
we propose GDEC, an end-to-end graph-based generative deep neural network for clus-
tering DTC subtypes. GDEC is optimized using an integrated loss function comprising 
two modules: a generative-adversarial module to capture spatial distribution knowledge 
of the data, facilitating extraction of high-quality patient information; and a clustering 
module to identify the disease subtypes. The integration of the modules enables the deep 
neural network to benefit from the optimization of these two tasks. Moreover, a graph 
convolution layer in GDEC is employed to incorporate additional gene connection infor-
mation associated with cancers.

The experiment demonstrates that GDEC exhibits a competitive performance in can-
cer subtyping, surpassing other methods in terms of clustering efficacy and enabling the 
identification of biologically significant cancer subtypes. Considering the commonly 
used TCGA pan-cancer atlas has classified cancers into a variety of new pan-cancer sub-
types according to similar molecular expression [19]. Despite the apparent specificity 
of each tumor class, molecular variants are often integrated into established biological 
pathways that are shared by different tumor types [20]. Studies of relatively rare cancers 
would benefit from the results of pan-cancer analysis [21, 22]. Based on the pan-DTC 
subtypes clustered by GDEC, we identified 21 hub genes associated with intra-tumor 
heterogeneity and prognosis. Further drug analysis identified Dasatinib [23] and YM155 
[24] as potential therapeutic agents for improving the prognosis of patients in DTCs. We 
hope our findings can contribute to prolonging the survival of these patients.

Methods
Datasets

Six datasets (COAD (colon), ESCA (esophageal), LIHC (liver), PAAD (pancreatic), 
READ (rectum), and STAD (stomach)) obtained from TCGA [25] and ten additional 
cancer datasets (GSE91061 [26], GSE10186 [27], GSE14333 [28], GSE17538 [26], 
GSE54236 [29], GSE57495 [30], GSE84437 [31], GSE78220 [28], GSE135222 [31], and 
IMvigor 210 [32]) collected from public databases were used in this study. The expres-
sion data underwent log transformation normalization, with features being excluded if 
they contained more than 20% missing values. For the remaining samples, missing val-
ues were imputed using median values. After preprocessing, the R package “limma” [33] 
was adjusted to remove batch effects. The detailed data information are given in Supple-
mentary Table S1.
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Deep learning framework for cancer subtyping

As depicted in Fig.  1(A), the proposed deep learning neural network incorporates a 
GCN layer to extract the effectiveness information of cancer features by leveraging the 
biological prior knowledge regarding gene connection pathways. Assuming the cancer 
dataset comprises N patients with gene features X = (x1, x2, . . . , xp), and the input 
connection graph G is constructed using the KEGG pathway information. The output of 
the GCN layer is expressed as:

Xg = σ

(
∼
D

−1
2
A

′ ∼
D

−1
2
XW (l)

)
 (1)

where X
′
 denotes the output of the GCN layer, is the adjacency matrix, and D is the 

degree matrix in the constructed graph G, W (l) represents the coefficient matrix in the 
deep neural network. The activation function σ (· ) used in this study is RELU. Subse-
quently, the GCN output features are fed into a fully connected layer, which performs 
nonlinear transformations and enhances the graph structure features extracted by GCN. 
By leveraging the fully connected layer, we can effectively map the features generated by 
GCN to a potentially more representative space, thereby optimizing them further in the 
following generative-adversarial module.

To enhance the extraction of crucial information regarding cancer patients, a genera-
tive-adversarial module is incorporated into the deep neural network to capture knowl-
edge about the spatial distribution of data.

For cancer genomics data with a complex distributed structure, the generative adver-
sarial network can help extract representative and more discriminative potential fea-
tures. This is particularly critical for clustering cancer subtypes, as the data structures of 
different cancer subtypes may have highly nonlinear patterns that may be difficult to fully 
capture using autoencoders alone. Additionally, the generator of a generative adversarial 
network can effectively handle data noise and provide robust feature representations.

Fig. 1 The architecture of proposed GDEC framework for digestive tract tumor subtyping. (A). The deep neural 
network in GDEC for digestive tract tumor clustering. (B). The clustering performance obtained by GDEC evalua-
tion in different datasets. (C). The Pan-DTC analysis by subtyping with GDEC. (D). Hub gene identification by using 
different interpretable machine learning methods. (E). The pan-DTC immunotherapy analysis and drug suggestion 
with identified hub genes
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The generative-adversarial module comprises three components: an encoder, a 
decoder, and a discriminator. The encoder generates a non-linear low-dimensional rep-
resentation of the cancer patient features Z, while the decoder reconstructs the com-
pressed features back to the original input. Furthermore, the discriminator is used to 
force the compressed features to adhere to the prior distribution. The loss le that is used 
to calculate the Euclidean distance between input Xg  and output X ′

g  which can be 
expressed as:

le = ||Xg − X ′
g ||22 (2)

The loss function in the discriminator can be decomposed into two components: the 
generator loss and the discriminator loss. The generator loss quantifies the discrepancy 
between the compressed data generated by the encoder and real samples, which the loss 
function is written as:

lg = − 1
n

∑ n

i=1
(log(dfakei

)) (3)

The objective of the discriminator loss is to accurately discern between the real and gen-
erated sample while minimizing the misclassification by the discriminator:

min
Q

max
D

EZ′∼P (Z) (log (D (Z ′))) +

EZ∼Q(Z) (log (1 − D (Z)))
 (4)

The discriminator loss ld can be expressed as:

ld = − EZ′∼P (Z) (log (D (Z ′)))
− EZ∼Q(Z) (log (1 − D (Z)))
− EZ∼Q(Z) (log (D (Z)))

 (5)

Hence the total loss of the generative-adversarial module is given as:

la = le + α ld (6)

To facilitate the integration of diverse tasks in algorithmic optimization and enhance 
method usability, we constructed the end-to-end deep neural network by merging the 
generative-adversarial module with the clustering task. The clustering model was com-
pleted to minimize the following objective for cancer subtyping:

lc =
∑

i

∑
jpij log

pij

qij
 (7)

where qij  can describe the similarity between the cluster center µ j and embedded 
point zj  by Student’s t-distribution:

qij =

(
1 + ||zi − µ j ||2

)−1

∑
j

(
1 + ||zi − µ j ||2

)−1  (8)

The pij  is the target distribution written as:
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pij =
q2

ij/
∑

iqij∑
j

(
q2

ij/
∑

iqij

)  (9)

The total loss function in GDEC can be calculated as: l GDEC = lc + γ La, where the 
value of γ  was set to 0.1 to balance the importance of generative-adversarial loss la and 
clustering loss lc.

Feature importance evaluation

Enhanced interpretability of deep neural networks is crucial for our tasks, as a compre-
hensive understanding of the decision-making process employed by models can foster 
trust in the clustering outcomes and offer valuable biological insights. The interpretative 
algorithm multiple classification random forest was used to fit the clustering results of 
black box deep neural networks, for calculating the individual contribution of each fea-
ture gene. This approach provides a more intuitive interpretation of the clustering out-
comes and facilitates the identification of crucial gene features associated with tumor 
subtypes. Random Forest (RF) is an ensemble learning-based approach that combines 
with K trees ( T1 (x1, y1) . . . Tk (xn, yn) , where x represents the input features and y 
denotes the cancer subtype labels distinguished by the deep neural network. The RF-
based classification model can be formulated as follows:

ŷi = ∅ (xi) =
∑

K
k=1fk (xi) , fk ∈ F  (10)

where F =
{

f (x) = wq(x)
} (

q : Rm → T, w ∈ RT
)

can be regarded as the classifica-
tion trees integration, q represents the classification trees structure, T denotes the leave 
numbers in each tree, and fk corresponds to the tree with weight w and structure q. 
Based on the results calculated by RF, the genes Gini scores>0.2 are considered signifi-
cant in relation to pan-DTC heterogeneity.

Pan-DTC biomarker identification

To further narrow down the range of potential targets related to pan-DTC, we further 
explored the relationship between the prognosis and the important genes screened 
by RF, The impact of these genes on cancer prognosis was evaluated by constructing a 
comprehensive set of six machine learning algorithms (CoxBoost, stepwise Cox regres-
sion, generalized boosted regression models (GBMs), supervised principal components 
(SuperPC), partial least squares Cox regression (plsRcox), and Random Survival Forests 
(RSF)). The TCGA-DTC cohort was utilized as the training set, while DTC datasets col-
lected from the GEO database were defined as the validation set. The development pipe-
line for biomarker identification is outlined as follows:

1. Univariate Cox regression analysis was performed within both TCGA-DTC and 
GEO-DTC cohorts. Genes that exhibited a p-value of less than 0.05 and maintained 
consistent hazard ratio (HR) directionality across both two cohorts were identified as 
Stable Prognosis-Related Genes (SPRGs).

2. A comprehensive approach was employed by utilizing six machine learning 
algorithms. In total, 32 unique combinations of these algorithms were explored to 
formulate the most predictive and interpretable prognosis evaluation model, with the 
primary objective of achieving optimal concordance index (C-index) performance.
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3. Upon establishing the model using the training set, we proceeded to evaluate its 
accuracy across all validation cohorts. This involved calculating the average C-index 
for each model configuration. The interpretable model with the highest average 
C-index was considered as the optimal solution, identifying the prognosis-related 
genes that could serve as potential biomarkers.

Method performance evaluation

The -log10(p) value is employed as a main metric to assess the disparity in survival 
among patients within distinct cancer subtypes. A higher -log10(p) value indicates supe-
rior clustering performance, while a lower value suggests no significant variation in the 
survival of cancer patients with different subtypes. Additionally, the average silhouette 
coefficient (SC), Davies-Bouldin Index (DBI), Dunn Index (DI), and Squared Error with 
cosine distance (SSE) were employed to assess the clustering performance under various 
hyperparameters in GDEC.

The hyperparameters (batch size, learning rate and the node number in the middle-
hidden layer) in GDEC were determined based on the average silhouette coefficients of 
the clustering results. The batch size (BS) for the deep neural network was set [8, 16, 
3], the learning rate (LR) was set [1e-4, 1e-5, 1e-6], and the node number was set [10, 
20, 50]. The hyperparameter sensitivity analysis results are given in the Supplementary 
Table S2.

The selection of cluster values k, ranging from 2 to 10 for different types of DTCs, is 
determined by calculating the within sum of squares (wss) using the k-means algorithm 
in the initial stage. The determined subtypes of different cancers are given in Table 1. 
Additionally, to verify whether our results are biologically meaningful, this study applied 
a variety of biological analysis means, as detailed in the Biological Analysis section in the 
supplementary file.

Results
GDEC clustering performance evaluation

In Table  1, we present a concise summary of the DTC subtype identification perfor-
mance achieved by GDEC. COAD and LIHC are clustered into five subtypes, while 
READ and STAD are clustered into four subtypes. ESCA has two subtypes, whereas 
PAAD has three. The log-rank p-values among different cancer subtypes obtained by our 
method are below 0.01(-log10(p) = 2), except for ESCA, which exhibits significant differ-
ences in survival between patients with distinct subtypes. The values of SC, DBI, DI and 
SSE are listed in the following columns of Table 1.

Table 1 The results of the clustered DTC subtypes
Cancer Subtypes -log10(p) SC DBI DI SSE
COAD 5 2.317 0.531 0.704 0.094 0.003
ESCA 2 0.796 0.443 0.798 0.021 1.482
LIHC 5 3.035 0.628 0.512 0.184 0.003
PAAD 3 2.036 0.579 0.506 0.029 1.039
READ 4 2.401 0.562 0.466 0.054 6.001
STAD 4 2.267 0.396 0.861 0.028 0.0001
Pan-DTC 4 5.585 0.807 0.203 0.090 0.0004
Average - 2.636 0.564 0.579 0.071 1.218
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As depicted in Fig. 2A, we present the visualization of GDEC clustering results across 
six DTCs. The distinct subtypes of cancer patients are color-coded and projected onto a 
two-dimensional plane using principal component analysis. The visualization of cluster-
ing results reveals a discernible disparity in the distribution of patients across distinct 
subtypes within the same cancer. Our findings demonstrate that GDEC exhibits favor-
able visualization performance in most cancers; however, ESCA presents mixed clus-
tered cancer subtypes (  p=0.16). Furthermore, in Fig. 2B we present the Kaplan-Meier 
survival curves of the DTCs drawn based on the distinguished subtypes identified by 
GDEC. These results demonstrate that for most cancers the p-values among different 
cancer subtypes were consistently below 0.01. Thus, our method successfully identifies 
statistically and biologically meaningful cancer subtypes with significant differences in 
patient survival observed across various subgroups.

Fig. 2 Clustering results evaluation obtained by GDEC. (A). The visualization of GDEC clustering results in the DTC 
datasets. (B). The Kaplan-Meier survival curves of six DTCs (COAD, ESCA, LIHC, PAAD, READ, STAD) drawn based 
on the distinguished subtypes by GDEC. (C). The survival curves drawn based the clustered subtypes by GDEC. 
(D). The number of pan-DTC patients distributed in different subtypes. (E). The individual proportion of different 
cancers in each pan-DTC subtype
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To assess the effectiveness of our approach in cancer subtyping, GDEC was com-
pared with six methods: the k-means, the sparse k-means (sparseK), denoising Auto-
encoder with k-means (DAE-KM), scGAC [16], DECC [34] and ProgCAE [35]. While 
the k-means and sparseK belong to traditional clustering methods, the others are deep 
learning-based clustering frameworks proposed in recent years. The performance 
obtained by GDEC was compared with the mentioned methods on the DTC datasets 
collected from the TCGA database. Table 2 gives the -log10(p) values obtained by differ-
ent computational methods. As shown in Table 2, GDEC gets the highest scores ranging 
from 0.796 (ESCA) to 3.025 (LIHC), with an average of 2.142. Compared to other meth-
ods, GDEC demonstrated a significant improvement of 0.728 (average -log10(p) = 1.414). 
The two traditional methods (k-means and sparseK) obtained lower average -log10(p) 
values compared to DL-based methods (average -log10(p) = 1.58). ProgCAE outper-
formed DAE-KM and scGA but performed worse than DECC. Among all comparison 
methods, DECC achieved the highest average -log10(p) value of 1.813; however, it still 
falls short compared to GDEC performance (2.142).

The survival analysis of pan-DTC subtypes

After verifying the reliability of our method, we performed GDEC in pan-DTC subtyp-
ing. Figure 2C shows four subtypes were clustered and the significant differences in pan-
DTC patient survival are observed across various subgroups (p < 0.001). In these four 
pan-DTC subtypes, there are 373 individuals in subtype S0, 115 individuals in subtype 
S1, 173 individuals in subtype S2, and 756 individuals in subtype S3 (Fig. 2D). In Fig. 2E, 
we also present the individual proportion of different cancers in each pan-DTC subtype.

Notably, subtype S1 exhibited the most favorable prognosis among all evaluated sub-
types. Presently, the molecular subtyping of DTC predominantly hinges on molecular 
expression profiles, often associated with discrete biological functionalities. Thus, our 
investigation sought to delve into the unique molecular attributes characterizing these 
subtypes. Recognizing the pivotal influence of tumor immune microenvironment on 
tumorigenesis and disease progression, we meticulously quantified the infiltration levels 
of immune cells. Compared to other subtypes, S1 demonstrated a higher abundance of 
immune cells within its TME, particularly anti-tumor immune cells as determined by 
various algorithms including TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, 
MCPCOUNTER, XCELL, EPIC and ssGSEA (Fig.  3A, C). These findings suggest that 
subtype S1 represents an immune-activated microenvironment.

To delve deeper into transcriptomic disparities, our study undertook an exhaustive 
analysis targeting putative regulators intricately linked with cancer chromatin remod-
eling, encompassing examination of 23 transcription factors (TFs) pertinent to DTC. 
(Fig.  3B). The strong correlation between regulator activity and subtypes confirms 

Table 2 log10(p) values obtained by various methods across nine cancer datasets
k-means sparseK DAE-KM scGAC DECC ProgCAE GDEC

COAD 0.661 0.844 1.200 1.465 1.278 1.522 2.317
ESCA 0.151 0.770 0.277 0.316 0.569 0.630 0.796
LIHC 0.982 1.725 1.668 2.015 1.301 2.122 3.035
PAAD 1.528 0.839 2.091 1.378 3.293 1.873 2.036
READ 1.054 1.224 1.460 2.524 2.255 1.954 2.401
STAD 1.832 1.381 1.507 1.076 2.184 1.970 2.267
Average 1.035 1.131 1.367 1.462 1.813 1.678 2.142
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Fig. 3 Molecular landscapes of DTC subtypes. (A). Heatmap displaying the infiltration of immune cells across 
four subtypes, analyzed using a suite of algorithms including TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, 
MCPCOUNTER, XCELL, and EPIC. (B). Regulon activity profiles of 23 transcription factors (TFs) (top) and potential 
regulators involved in chromatin remodeling (bottom) across four subtypes. (C). Analysis of immune cell infiltra-
tion in four subtypes using the ssGSEA method. (D). Immune function analysis across four subtypes employing the 
ssGSEA method. (E). Comparison of ImmuneScore, StromalScore, and EstimateScore for the four subtypes using 
ESTIMATE algorithms. (F). Comparison of homologous recombination deficiency (HRD), intratumor heterogeneity 
(ITH), and aneuploidy scores across four subtypes
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the biological relevance of these subtypes. Notably, Androgen Receptor (AR), ERBB2, 
RXRA, FGFR3, and FOXA1 regulators were significantly activated in S1 and S2, while 
EGFR, GATA3, TP63, HIF1A, and STAT3 showed specific enrichment in S0 and S3 
(Fig. 3B). The regulon activity profiles associated with cancer-related chromatin remod-
eling underscore potential patterns of divergent regulation across molecular subtypes. 
This observation suggests that epigenetically mediated transcriptional networks play 
a pivotal role as discerning factors among these distinct molecular subtypes (Fig. 3B). 
Subsequently, we explored the relationship between subtypes and immune patterns. As 
depicted in Fig. 3C and D using the ssGSEA method, patients classified under S1 exhib-
ited more prominent immune-related functions. Consistently supporting this finding is 
our demonstration that patients belonging to S1 displayed elevated immune and stromal 
scores (Fig. 3E).

Interestingly, we observed higher expression levels of immune checkpoint-related 
genes, as well as MHC I and II related genes in patients belonging to S1 (Fig. 4A and C). 
Therefore, we utilized immune phenotype score (IPS) data to assess the response of four 

Fig. 4 The association between subtypes and immune-related functions. (A). Comparison of immune checkpoint 
genes among four subtypes. (B). Comparison of MHC I genes among four subtypes. (C). Comparison of MHC II 
genes among four subtypes. (D). Comparison of IPS scores of four subtypes among CTLA4_Positive PD1_Positive, 
CTLA4_Negative PD1_Negative, CTLA4_Negative PD1_Positive and CTLA4_Positive and PD1_Negative subgroups 
(*P < 0.05, **P < 0.01, ***P < 0.001)
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patient subgroups treated with different immune checkpoint inhibitors (ICIs), including 
anti-PD-1 and anti-CTLA-4. As depicted in Fig. 4D, patients within the S1 group exhib-
ited significantly elevated IPS scores in the CTLA4_Negative PD1_Negative subgroup 
( p< 0.05). Additionally, we evaluated other immunogenic biomarkers such as HRD, ITH, 
and aneuploidy across all four clusters. Notably, compared to the other clusters, cluster 
S0 demonstrated heightened tumor immunogenicity (Fig. 3F).

Hub gene validation

Based on the pan-DTC biomarker identification results (Fig. S1), 21 hub genes were 
identified as associated with intra-tumor heterogeneity and prognosis. The GSCALite 
public server (http://bioinfo.life.hust.edu.cn/web/GSCALite/) was used to analyze their 
expression patterns across diverse tumor types in TCGA. Our analysis revealed that 
several genes, including LAMC, TNFRSF12A, and C2, exhibited significantly elevated 
expression levels in multiple cancer tissues (Fig. 5A). Furthermore, we observed a posi-
tive correlation between mRNA expression levels and copy number variations (CNVs) of 
the selected genes across most cancer types, particularly highlighting DVL3 as a promi-
nent example (Fig. 5B). Analysis of CNV frequency alterations demonstrated substantial 
disparities in the CNVs of the identified genes among different cancer types, with PEA15 
displaying the highest frequencies primarily characterized by heterozygous amplification 
events (Fig. 5C and D).

Furthermore, we observed substantial differences in the methylation levels of these 
genes between tumor and normal samples in most cancer specimens (Fig.  5E). Nota-
bly, there was a negative correlation between the methylation levels and mRNA expres-
sion levels of these genes across various cancers (Fig.  5F), suggesting that epigenetic 
modifications mediated by these genes may impact patient prognosis. Furthermore, our 
results elucidated that the identified genes play a pivotal role in activating the epithelial-
mesenchymal transition (EMT) pathway, concurrently exerting a substantial inhibitory 
influence on the cell cycle pathway. (Figure 6A and B). To further validate the prognostic 
significance of these hub genes, we performed Kaplan-Meier analysis using data from 
the Biomarker Exploration for Solid Tumors (BEST) database  (   h t t p s : / / r o o k i e u t o p i a . c o m 
/ a p p _ d i r e c t / B E S T /     ) . The results obtained were consistent with those derived from Cox 
regression analysis (Fig. 6C). Additionally, these genes exhibited significant associations 
with both disease-specific survival (DSS) and progression-free survival (PFS) in DTC 
patients, underscoring their profound prognostic relevance for individuals affected by 
this condition (Fig. 6C).

Potential therapeutic drug screening

Based on the identified hub genes in this study, we try to screen the potential thera-
peutic drugs for pan-DTC treatment. Significant differences in prognosis were observed 
between high-risk and low-risk populations (Fig. S2-S3), as evidenced by Gene Set 
Enrichment Analysis (GSEA) which revealed significant activation of pathways such 
as epithelial-mesenchymal transition (EMT), angiogenesis, and TGF-beta in high-risk 
patients (Fig. 7A). Considering the poor response to immunotherapy observed in high-
risk patients (Fig. S4), we employed the Cancer Therapeutics Response Portal (CTRP) 
and Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) databases to iden-
tify potential therapeutic drugs for this patient group. To validate the reliability of our 

http://bioinfo.life.hust.edu.cn/web/GSCALite/
https://rookieutopia.com/app_direct/BEST/
https://rookieutopia.com/app_direct/BEST/
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methodology, cisplatin was used as a benchmark since it is commonly employed for 
DTC treatment. Our algorithm predicted sensitivities consistent with established clini-
cal outcomes, corroborating a previous study that identified ERCC1 as a prognostic bio-
marker in advanced DTC patients receiving cisplatin-based chemotherapy. Notably, our 

Fig. 5 Differential expression analysis and CNV-related analysis of selected hub genes among six DTCs. (A). Differ-
ential expression analysis of hub genes. (B). Correlation analysis between CNV and mRNA expression level of hub 
genes. (C). The CNV pie distribution indicates the constitution of Heterozygous/Homozygous CNV of each hub 
genes in each cancer. (D). The distribution of heterozygous and homozygous CNV of hub genes in each cancer. 
(E). Differential methylation expression analysis of hub genes. (F). Correlation analysis between methylation and 
mRNA expression level of hub genes
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analysis demonstrated that low expression levels of ERCC1 were associated with a favor-
able response to cisplatin therapy, suggesting a potential therapeutic advantage (Fig. 7B).

Subsequently, we conducted a systematic investigation to identify potential drugs for 
high-risk patients based on previous research findings. From the CTRP database, we 
identified five promising candidates (Tamatinib, Dasatinib, YM-155, Birinapant, Caner-
tinib; Fig. 7C), and from the PRISM database, six candidates showed promise (tedizolid-
phosphate, Dasatinib, YM-155, PHA-793887, Litronesib and LY2606368; Fig.  7D). To 
further validate the efficacy of these compounds in treating high-risk patients, com-
prehensive literature searches were performed using PubMed database. Ultimately, our 
analysis revealed that Dasatinib and YM-155 exhibited significant potential as therapeu-
tic agents for pan-DTC patients.

Discussion
Although our method has been demonstrated to provide reliable cancer subtype labels, 
there are still several pertinent questions that warrant discussion. Firstly, the integra-
tion of different omics information has been proven to yield valuable insights into cancer 
patients [36, 37, 38]. Hence, incorporating multimodal data (such as images, epigenome 
data, clinical data, etc.) may obtain more comprehensive information and improve the 
clustering performance of our proposed method. Additionally, patient data is charac-
terized by high value and low volume. Currently, single cell sequencing technology is 
rapidly advancing and generating vast amounts of data. The combination of single cell 

Fig. 6 Pathway analysis and prognosis analysis of hub genes among six DTCs. (A). The heatmap shows the activa-
tion of pathways among six DTCs. (B). The heatmap shows the activation and repression status of hub genes on 
related pathways. (C). Correlation analysis between prognosis and mRNA expression level of hub genes
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data with patient data may facilitate the construction of high-quality clustering models. 
Thirdly, our finding leads us to propose that neutrophils may contribute to the nuanced 
heterogeneity observed within gastrointestinal malignancies. However, further compre-
hensive investigation is needed to delve deeper into the precise role of neutrophils in 
shaping this heterogeneity.

Fig. 7 Identification of potential therapeutic agents for patients in pan-DTC. (A). Utilization of GSEA algorithm to 
identify pathways significantly activated in the high-risk cohort. (B). Preliminary assessment of cisplatin sensitivity 
to validate the computational algorithm’s feasibility. (C-D). Correlation and differential analysis of drug sensitivity 
for potential therapeutic agents identified from the CTRP and PRISM datasets
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Considering the potential ways discussed, in the future we aim to integrate multimodal 
information on cancer and incorporate single cell data as prior knowledge for model 
training, to continuously enhance the performance of our method. Moreover, deepen-
ing our understanding of the intricate interplay between neutrophils and the complex 
landscape of gastrointestinal tumor heterogeneity holds great potential in refining thera-
peutic strategies and optimizing patient outcomes. Therefore, future research endeavors 
aimed at unraveling the intricate mechanistic underpinnings of neutrophil involvement 
in tumor heterogeneity are imperative for advancing our therapeutic arsenal.

Conclusion
Various computational approaches have been proposed for cancer subtyping through 
the patients’ omics data analysis. However, due to the limited sample size and nonlin-
earity of high-dimensional data, clustering may result in ambiguous and overlapping 
cancer subtypes. To address this challenge, we proposed GDEC, an end-to-end genera-
tive deep neural network for tumor subtyping. By applying it to six DTC datasets, our 
results indicate that GDEC outperforms other methods compared and can cluster bio-
logically meaningful tumor subtypes for selecting potential cancer-related genes. Based 
on the clustered subtypes, we have identified 21 hub genes that are associated with pan-
DTC heterogeneity and prognosis, exhibiting a strong correlation with immunotherapy 
response. Our findings suggest that pan-DTC patients may benefit from targeted thera-
pies such as Dasatinib and YM-155. By integrating advanced computational algorithms 
and biological analysis, this study lays the foundation for pan-DTC patient precision 
treatment.
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