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Abstract
Background  Membranous nephropathy (MN) and IgA nephropathy (IgAN) pose 
challenges in clinical treatment with existing therapies primarily focusing on symptom 
relief and often yielding unsatisfactory outcomes. The search for novel drug targets 
remains crucial to address the shortcomings in managing both kidney diseases.

Methods  Utilizing GWAS data for MN (ncase = 2150, ncontrol = 5829) and IgAN 
(ncase = 15587, ncontrol = 462197), instrumental variables for plasma proteins were 
derived from recent GWAS. Sensitivity analysis involved bidirectional Mendelian 
randomization analysis, MR Steiger, Bayesian co-localization, and Phenotype scanning. 
The SMR analysis using eQTL data from the eQTLGen Consortium was conducted to 
assess the availability of selected protein targets. The PPI network was constructed to 
reveal potential associations with existing drug treatment targets.

Results  The study, subjected to the stringent Bonferroni correction, revealed 
significant associations: four proteins with MN and three proteins with IgAN. In plasma 
protein cis-pQTL data from two cohorts, an increase in one standard deviation in 
PLA2R1 (OR = 2.01, 95%CI = 1.83–2.21), AIF1 (OR = 9.04, 95%CI = 4.69–17.41), MLN 
(OR = 3.79, 95%CI = 2.12–6.78), and NFKB1 (OR = 29.43, 95%CI = 7.73–112.0) was 
associated with an increased risk of MN. Additionally, in plasma protein cis-pQTL data, 
a standard deviation increase in FCGR3B (OR = 1.15, 95%CI = 1.09–1.22) and BTN3A1 
(OR = 4.05, 95%CI = 2.65–6.19) correlated with elevated IgAN risk, while AIF1 (OR = 0.58, 
95%CI = 0.46–0.73) exhibited IgAN protection. Bayesian co-localization indicated that 
PLA2R1 (coloc.abf-PPH4 = 0.695), NFKB1 (coloc.abf-PPH4 = 0.949), FCGR3B (coloc.abf-
PPH4 = 0.909), and BTN3A1 (coloc.abf-PPH4 = 0.685) share the same variants associated 
with MN and IgAN. The SMR analysis indicated a causal link between NFKB1 and 
BTN3A1 plasma protein eQTL in both conditions, and BTN3A1 was validated externally.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Introduction
IgA nephropathy (IgAN) and membranous nephropathy (MN) are common primary 
glomerulonephritis worldwide (IgAN at least 25/1000000 annually), with IgAN being 
the leading cause of primary glomerular diseases [1, 2], followed closely by MN [3]. 
IgAN is pathologically characterized by mesangial deposition of granular IgA. Clinical 
manifestations of IgAN vary, ranging from asymptomatic macroscopic hematuria to 
acute glomerulonephritis [4]. While most IgAN patients follow a benign course, 26-50% 
may progress to end-stage renal disease (ESRD) within 10–30 years [5, 6], with faster 
renal function decline and poorer prognosis in Asian populations, imposing a significant 
burden on families and national economies [7, 8]. Currently, there is no effective and 
safe treatment specifically for IgAN, and widespread and optimized supportive therapy 
remains the cornerstone of IgAN patient management [9].

MN is an autoimmune disease characterized by immune complex deposition beneath 
the epithelial cells of the glomerular basement membrane, with diffuse thickening of 
the basement membrane. 60% of MN cases are attributed to circulating autoantibod-
ies targeting glomerular podocyte antigens, such as phospholipase A2 receptor type 
1 (PLA2R1) and thrombospondin type 1 domain 7  A (THSD7A) [4]. Mechanistically, 
membranous nephropathy can be classified into idiopathic membranous nephropa-
thy (IMN), representing about 75% of cases, and secondary membranous nephropathy 
(SMN) [4]. IMN is the most common type among non-diabetic adult nephrotic syn-
drome patients globally. Current clinical treatment for membranous nephropathy pri-
marily involves immunosuppressive regimens. However, traditional immunosuppressive 
therapies, including corticosteroids, cyclophosphamide, tacrolimus, cyclosporine, and 
rituximab, are associated with high recurrence rates and infection risks. Due to their 
toxic effects, these therapies are limited to high-risk MN patients with clinical presen-
tations of nephrotic syndrome [10]. Supportive therapy remains the primary treatment 
approach for non-nephrotic proteinuria patients clinically, underscoring the importance 
of exploring mild yet effective treatment modalities.

Human proteins play a crucial role as the most important components within the 
biological organism, participating in a myriad of biochemical reactions, cellular activi-
ties, and phenotypic expressions. The majority of known drug targets are proteins, with 
approximately 20,000 proteins encoded by the human genome [11], and around one-
fourth of them potentially regulated by small molecules [12]. However, the number of 
human targets identified to date is still less than 1,000 [13]. Nelson et al. demonstrated 
that proteins associated with diseases, supported by genetic linkage, doubled the success 
rate of clinical development [14]. In recent years, Mendelian randomization (MR) analy-
sis has been widely used in drug target development and drug repurposing [15]. MR is a 
genetic instrumental variable analysis that typically employs single nucleotide polymor-
phisms (SNPs) from Genome-Wide Association Studies (GWAS) as genetic instruments 
to estimate the causal effects of exposure on outcomes. Compared to observational 

Conclusion  Genetically influenced plasma levels of PLA2R1 and NFKB1 impact MN 
risk, while FCGR3B and BTN3A1 levels are causally linked to IgAN risk, suggesting 
potential drug targets for further clinical exploration, notably BTN3A1 for IgAN.
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Drug targets4, pQTL5



Page 3 of 17Xu et al. BioData Mining           (2024) 17:49 

studies, MR can avoid the influence of confounding factors. With advancements in high-
throughput genomics and proteomics technologies in plasma, MR-based strategies have 
facilitated the identification of potential therapeutic targets for various diseases (e.g., 
heart failure [16] and stroke [17]). However, to date, few MR studies have integrated 
GWAS and protein quantitative trait locus (pQTL) data for IgAN and MN. Therefore, 
this study aims to integrate research on plasma proteomics data, utilizing two-sample 
MR and Bayesian co-localization to explore potential drug treatment targets for IgAN 
and MN.

Materials and methods
Study design

This study is a MR and co-localization study based on summary data from multiple cis-
pQTL GWAS to explore potential drug targets for MN and IgAN. The study follows the 
STROBE-MR guidelines for MR analysis and operates under three fundamental assump-
tions: (1) the instrument variables are closely associated with the selected plasma pro-
teins; (2) the chosen instrument variables are independent of any potential confounding 
factors; (3) genetic variation is unrelated to the selected kidney disease outcomes, except 
through plasma proteins. Additionally, other assumptions, including the absence of sta-
tistical interactions, must be met [18].

The study proceeds in three main steps: first, the summary data of cis-pQTL for 
plasma proteins and MR studies for MN and IgAN are separately gathered; second, co-
localization analysis and related sensitivity analyses are conducted to ensure the accu-
racy of results and the suitability of selected protein targets; third, based on Summary 
Data-based Mendelian Randomization (SMR) analysis, large-scale eQTL data from the 
eQTLGen Consortium are utilized to determine if the identified potential drug tar-
gets for MN and IgAN have a causal association with kidney disease outcomes. Finally, 
the study performs Protein-Protein Interaction (PPI) network analysis to investigate 
the association between the potential drug targets identified in this study and existing 
research on treatment targets for MN and IgAN.

The study utilizes GWAS summary-level data, and all informed consents and ethical 
approvals were obtained in the original studies. The study design flowchart is illustrated 
in Fig. 1.

Data sources

QTL GWAS data source

For the initial MR analysis, plasma pQTL data come from Zheng et al. [19] integrating 
studies from five GWAS research cohorts [20–24]. The instrumental variable must meet 
specific criteria: (1) significant genome-wide correlation (P < 5e − 8); (2) independent 
association (linkage disequilibrium (LD) set at r2 < 0.001); (3) only cis-acting pQTLs are 
included in this study; (4) located outside the major histocompatibility complex bound-
aries (CHR6, 26–34 Mb) [25]. Finally, the study includes 738 cis-acting pQTLs for 734 
proteins. Additionally, plasma pQTL data from Ferkingstad, E [26] (measuring 4907 
plasma proteins in 35559 participants) are used for validation and integration, extracting 
cis-acting pQTLs for each protein based on transcription start and end points ± 1 MB.
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For the eQTL data used in SMR analysis, data are obtained from the eQTLGen Con-
sortium, including summary data from 37 datasets involving 31,684 individuals [27]. The 
study utilizes cis-eQTLs and lead SNPs for SMR analysis.

Missing information such as effect allele frequencies in the QTL GWAS summary sta-
tistics is imputed using the matched human genome construct as a reference.

Summary GWAS data for MN and IgAN

The GWAS summary data for membranous nephropathy (MN) used in this study were 
obtained from the largest meta-analysis of GWAS published in IEU OpenGWAS, involv-
ing 2,150 cases and 5,829 controls. All cases in the study were defined based on kid-
ney biopsy diagnosis of idiopathic MN, with any secondary cases excluded. The control 
group comprised healthy individuals, with any known cases of nephropathy excluded 
(GWAS ID: ebi-a-GCST010005).

The GWAS summary data for IgA nephropathy (IgAN) used in this study were 
derived from the latest GWAS summary data published in IEU OpenGWAS, involv-
ing 15,587 cases and 462,197 controls. The diagnosis of IgAN was determined based 
on ICD criteria, defined as chronic glomerulonephritis characterized by predominant 
immunoglobulin A deposition in the mesangial region of the glomerulus (GWAS ID: 
ebi-a-GCST90018866).

Fig. 1  The schematic diagram of the study design
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The validation GWAS dataset for IgAN in this study was sourced from the Finngen 
database, involving 592 cases and 376,685 controls (GWAS ID: finngen_R8_N14_IGA_
NEPHROPATHY), and from the IEU database, involving 977 cases and 5,957 controls 
(GWAS ID: ieu-a-1081). The diagnosis of IgAN in both datasets was determined accord-
ing to ICD criteria.

Statistical analysis

Mendelian randomization (MR) study

The study employs Wald ratio and Inverse Variance Weighted (IVW) methods to vali-
date the causal relationship between plasma pQTL and MN/IgAN. IVW is the primary 
analysis method for MR, providing a weighted average of results based on the variance 
and covariance of effect estimates for each genetic variant, assuming unbiased instru-
ment variables and a common causal effect [28]. The study sets a threshold P value of 
0.05/2415 (P < 2.07e − 5) after Bonferroni correction for result prioritization and further 
analysis. MR is performed only for initially identified proteins, and the threshold P value 
is set at 0.05 for external validation.

Sensitivity analysis and reverse causal inference

Cochrane’s Q test is utilized to assess heterogeneity among instrument variables. 
Reverse MR is conducted to ensure the reliability of study results. MR Steiger analysis is 
performed to verify the directionality of the association between proteins and MN/IgAN 
[29]. Additionally, to assess the close correlation between a single SNP and MN/IgAN, 
the study conducts a search for each SNP’s secondary phenotypes in GeneATLAS [30].

Bayesian co-localization analysis

Bayesian co-localization analysis is a statistical method for evaluating the probability 
that two or more different features or traits share common genetic causes or causal vari-
ations [31]. The analysis is conducted under five basic hypotheses: H0 (no association), 
H1 (association with the protein but not the kidney disease outcome), H2 (association 
with the kidney disease outcome but not the protein), H3 (independent association with 
both), and H4 (shared association with both). The study defines H4 as the main basis for 
Bayesian co-localization, considering a posterior probability (PPH4) greater than 60% as 
evidence for H4, and PPH4 greater than 90% as strong evidence for co-localization.

Summary data-based mendelian randomization (SMR)

In SMR analysis, the HEIDI test is used to assess heterogeneity-dependent tools, vali-
dating whether observed associations between gene expression and outcomes are due 
to linkage scenarios [32]. External validation is performed using plasma pQTL data and 
IgAN GWAS data from the Finngen and IEU databases. Additionally, eQTL data from 
the eQTLGen Consortium are utilized for SMR analysis to ensure the accuracy of study 
results.

PPI network analysis

This study investigated the interactions between genes associated with MN and IgAN 
and the currently available potential drug targets. We identified eight drugs for improv-
ing MN from recent high-quality research [33] and obtained information on six 
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therapeutic drugs for IgAN from a high-quality review study [34]. Subsequently, we 
retrieved corresponding drug targets from the DrugBank database (https://www.drug-
bank.ca) [35].

All PPI analyses were conducted using the Search Tool for the Retrieval of Interacting 
Genes (STRING) database (https://string-db.org/). The minimum requirement for ​i​n​t​e​
r​a​c​t​i​o​n score was set at 0.15 to ensure the inclusion of gene interactions with a certain 
level of correlation. Subsequently, to further elucidate the potential signaling pathways 
involved in protein interactions relevant to the treatment of MN and IgAN, we utilized 
GeneMANIA to annotate these potential pathways. Finally, this study screened the iden-
tified drug targets using the Enrichr platform in conjunction with the DSigDB database 
to identify chemical compounds associated with these targets. Enrichr then generated a 
results table containing information on drug-target associations, including enrichment 
scores, p-values, and adjusted significance levels. Highly relevant drug compounds were 
identified based on statistical significance, and the results were quantified to illustrate 
the strength of associations between the drugs and their targets.

Results
Instrument variable selection

The information on instrument variables that meet the criteria is presented in Table S1 
and Table S2. To avoid weak instrument bias, the study ensures that F-statistics are all 
greater than 10. We ultimately identified 738 and 1,681 cis-pQTLs in the two plasma 
protein datasets, respectively.

MR Analysis results for 738 and 1681 Cis-acting plasma protein pQTLs with IgAN and MN

Under the multiple corrected P value threshold (P < 2.07e-5), significant causal associa-
tions were found in the 738 cis-pQTLs dataset, showing a significant causal association 
between Phospholipase A2 Receptor 1 (PLA2R1) and MN (OR = 2.01, 95%CI = 1.83–
2.21, P = 2.78e-46), and a significant causal association between Fc Fragment Of IgG 
Receptor IIIb (FCGR3B) and IgAN (OR = 1.15, 95%CI = 1.09–1.22, P = 8.98e-7). To 
ensure the reliability of the study, subsequent analysis in the 1681 cis-pQTLs data-
set revealed significant causal associations between Allograft Inflammatory Factor 
1 (AIF1) (OR = 9.04, 95%CI = 4.69–17.41, P = 4.78e-11), Motilin-Like Neuropeptide 
(MLN) (OR = 3.79, 95%CI = 2.12–6.78, P = 7.25e-06), Nuclear Factor Kappa B Subunit 1 
(NFKB1) (OR = 29.43, 95%CI = 7.73–112.0, P = 7.06e-07) and MN; and AIF1 (OR = 0.58, 
95%CI = 0.46–0.73, P = 7.15e-6), FCGR3B (OR = 1.17, 95%CI = 1.10–1.24, P = 4.56e-
7), Butyrophilin Subfamily 3 Member A1 (BTN3A1) (OR = 4.05, 95%CI = 2.65–6.19, 
P = 1.10e-10) and IgAN. The MR analysis results are presented in Fig. 2; Table 1.

Sensitivity analysis and bayesian co-localization analysis

Sensitivity analysis is a crucial step in MR studies to detect potential pleiotropy. The 
Cochrane’s Q test p-values for MR analysis results in this study are all greater than 0.05, 
indicating the absence of heterogeneity. Furthermore, MR Steiger tests ensure the cor-
rect directionality of the relationship between the instrumental variable and exposure 
and outcome variables. To minimize interference from confounding factors, a manual 
search of secondary phenotypes controlled by the included SNPs in this study showed 
no clear interference from confounding factors. Subsequently, Bayesian co-localization 

https://www.drugbank.ca
https://www.drugbank.ca
https://string-db.org/
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analysis was conducted, suggesting a close association between PLA2R1 (coloc.abf-
PPH4 = 0.695) and MN in the 738 cis-pQTLs dataset; and a strong association between 
NFKB1 (coloc.abf-PPH4 = 0.949), FCGR3B (coloc.abf-PPH4 = 0.909), and BTN3A1 
(coloc.abf-PPH4 = 0.685) and IgAN in the 1681 cis-pQTLs datasets. Sensitivity analysis 
results are shown in Table 2, and co-localization results are shown in Fig. 3.

SMR Analysis of plasma protein eQTL data based on eQTLGen Consortium and external 

validation

Firstly, MR analysis was conducted using pQTL data for selected proteins (AIF1, 
FCGR3B, BTN3A1) and IgAN GWAS data from the Finngen and IEU databases for 
external validation. Additionally, the largest plasma protein eQTL data from the eQTL-
Gen Consortium (no eQTL data for PLA2R1 were found in this dataset) were used for 

Table 1  This study conducted inverse variance-weighted(IVW) significance analysis for all 
mendelian randomization outcomes
Study Exposure Outcome Gene Method OR 95%CI P_value
Zheng et al. [19] 738 plasma proteins MN PLA2R1 IVW 2.01 1.83–2.21 2.78e-46
Zheng et al. [19] 738 plasma proteins IgAN FCGR3B IVW 1.15 1.09–1.22 8.98e-7
Ferkingstad, E et al. [26] 1681 plasma proteins MN AIF1 IVW 9.04 4.69–17.41 4.78e-11
Ferkingstad, E et al. [26] 1681 plasma proteins MN MLN IVW 3.79 2.21–6.78 7.25e-6
Ferkingstad, E et al. [26] 1681 plasma proteins MN NFKB1 IVW 29.43 7.73–112 7.06e-7
Ferkingstad, E et al. [26] 1681 plasma proteins IgAN AIF1 IVW 0.58 0.46–0.73 7.15e-6
Ferkingstad, E et al. [26] 1681 plasma proteins IgAN FCGR3B IVW 1.17 1.10–1.24 4.56e-7
Ferkingstad, E et al. [26] 1681 plasma proteins IgAN BTN3A1 IVW 4.05 2.65–6.19 1.10e-10

Table 2  All sensitivity analysis outcomes of mendelian randomization analyses performed in this 
study
Outcome Exposure

(Zheng et al.[19])
heterogeneity test MR Steiger
Cochran’s Q Pval Steiger direction Steiger pval

IgA nephropathy FCGR3B - - TRUE 4.88e-62
Membranous nephropathy PLA2R1 - - TRUE < 0.01
Outcome Exposure

(Ferkingstad et al.[26])
heterogeneity test MR Steiger
Cochran’s Q Pval Steiger direction Steiger pval

IgA nephropathy AIF1 1.88 0.17 TURE 1.61e-7
IgA nephropathy FCGR3B 0.43 0.51 TURE 1.14e-14
IgA nephropathy BTN3A1 - - TURE < 0.0003
Membranous nephropathy AIF1 - - TRUE < 0.01
Membranous nephropathy MLN 0.02 0.89 TRUE < 0.01
Membranous nephropathy NFKB1 - - TRUE < 0.01

Fig. 2  Volcano plots illustrating the results of all Mendelian randomization analyses conducted in this study
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SMR analysis in this study. The study found a strong causal association between NFKB1 
eQTL data and MN (PSMR = 1.57e-92), and between BTN3A1 eQTL data and IgAN 
(PSMR = 3.20e-04) (SMR analysis for FCGR3B protein’s pQTL data was already validated 
in the aforementioned datasets). External validation MR analysis results are shown in 
Fig. 4, and SMR analysis results are shown in Table 3.

Association of Potential Drug Targets with current MN and IgAN drugs

The study explored existing drugs and targets for MN and IgAN, and all possible drugs 
and targets are listed in the Table 4. Finally, using PPI network analysis, the study investi-
gated the interaction between potential drug targets identified in this study and existing 
targets for MN and IgAN. BTN3A1 in IgAN may be a new drug target for the disease. 
The interaction between potential drug targets identified in this study and current pro-
tein targets for IgAN and MN is shown in Fig. 5.

Candidate drug prediction

The candidate drug prediction results indicate that, through analysis of the PPI network 
and the DSigDB database, we identified several potential drugs targeting proteins asso-
ciated with MN and IgAN. In MN, PLA2R1 and NFKB1 were identified as the major 
associated proteins, with relevant candidate drugs including: Menadione; tert-Butyl 

Fig. 4  A forest plot depicting the external validation analysis results for all Mendelian randomization analyses 
conducted in this study

 

Fig. 3  Scatter plot of the results of Bayesian colocation analysis conducted in this study
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Hydroperoxide; Decitabine and Hydrogen Peroxide. Additionally, specific drugs target-
ing NFKB1, such as Butein, Tyrphostin AG 1478, Dihydrexidine, N-phenyl-1  H-pyr-
azole-3-carboxamide, and Chlorpropamide, exhibited high Combined Scores (13617.26). 
In IgAN, BTN3A1 and FCGR3B were identified as the major associated proteins. Candi-
date drugs include Ciclopirox; Clozapine and Meclofenoxate. These results provide new 
directions for potential treatments of IgAN and MN through candidate drugs (Table 5).

Discussion
Traditional treatment approaches for IgAN include supportive care, tonsillectomy, and 
the use of steroids and immunosuppressive agents. Tonsillectomy aims to reduce the 
number of IgA production sites and decrease circulating IgA levels. However, its wide-
spread application is limited, and recent studies suggest that combining tonsillectomy 
with steroid pulses does not significantly increase clinical remission rates or reduce 
hematuria [36]. Due to the risks associated with tonsillectomy in adults and the lack of 
robust randomized controlled trials, the 2021 Kidney Disease: Improving Global Out-
comes (KDIGO) guidelines do not recommend its routine use [37]. Instead, the focus 
of IgAN treatment according to the 2021 KDIGO guidelines is on optimizing support-
ive care, including blood pressure management, the use of maximum tolerated doses 
of renin-angiotensin system inhibitors (RASI), and lifestyle changes. For those IgAN 
patients at risk of disease progression after at least 90 days of optimized supportive care, 
a six-month course of corticosteroid treatment may be considered [38]. However, the 
long-term efficacy and safety of glucocorticoids remain controversial. The STOP-IgAN 
study revealed that intensifying immunosuppressive therapy in high-risk IgAN patients 
did not delay the decline in estimated glomerular filtration rate (eGFR), and adverse 
reactions significantly increased [39]. The TESTING study demonstrated that adequate 
steroid treatment for IgAN significantly reduced proteinuria and decreased the risk of 
kidney failure events by 63%, but the risk of severe adverse events increased by 4.63 
times [40]. Additionally, targeted release formulations of budesonide, aimed at reduc-
ing adverse reactions, have received regulatory approval. In Chinese patients, mycophe-
nolate mofetil (MMF) has shown efficacy in clinical trials, with research indicating that 
adding subcutaneous MMF injections significantly reduce the risk of disease progression 
in progressive IgAN patients [41], aligning with our study results.

Currently, Western medicine lacks specific drugs for the treatment of MN, and the 
most common approach involves a combination of glucocorticoids and immunosup-
pressants. Guidelines also indicate that many complications of glomerular diseases result 
from clinical manifestations rather than specific histopathological patterns. These com-
plications can significantly alter the incidence and even mortality rates, underscoring 
the importance of actively managing such complications in clinical practice. This proac-
tive approach positively impacts the natural course of the disease and the prognosis for 
patients. Specific measures include controlling edema, reducing proteinuria, managing 
blood pressure, controlling blood sugar, addressing.

other metabolic issues, minimizing thrombosis formation, and slowing disease 
progression. These treatments may, to some extent, reduce or modulate the need 
for immunosuppressive drugs during therapy, thereby mitigating the potential side 
effects associated with immunosuppressive agents. Given the high cost of most 
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immunosuppressive drugs, reducing their usage can also alleviate economic pressure on 
patients, enhance medical compliance, and improve overall prognosis.

The Fc gamma receptors (FCGR), which bind to the Fc segment of immunoglobu-
lin G (IgG), constitute a protein family expressed by various immune cells. FCGR3B is 
the sole inhibitory member of the FcγR immune regulator family [42] and is primarily 
expressed by neutrophils and eosinophils. Research indicates that FCGR3B binds to and 
mediates the uptake of immune complexes in a dose-dependent manner [43]. Previous 

Table 4  The drug treatment targets identified in existing studies for MN and IgAN were retrieved in 
this study
Existing studies have shown that the treatment of membranous nephropathy related drugs and their 
targets
Drugs Targets
Anti-PLA2R1 antibodies PLA2R1
Anti-CD19 antibodies CD19
Anti-CD38 antibodies CD38
Rituximab MS4A1
Tacrolimus FKBP1A
Belimumab TNFSF13B
Cyclosporine CAMLG、PPP3R2、PPIA、PPIF
Cyclophosphamide NR1I2
Existing studies have shown that the treatment of IgA nephropathy related drugs and their targets
Drugs Targets
Budesonide NR3C1、ANXA1
atrasentan EDNRA
mannose-binding lectin-associated serine protease 2 inhibitor MASP2
Hydroxychloroquine TLR7、TLR9、ACE2
Valsartan AGTR1
Miconazole IMPDH1、IMPDH2、PTS

Fig. 5  The potential drug targets discovered in this study were assessed for protein interactions with the current 
proteins associated with IgAN and MN. (A. The figure presents the interactions of PLA2R1 and NFKB1 in MN with 
existing drug targets and related proteins. B. The figure illustrates the interactions of FCGR3B and BTN3A1 in IgAN 
with existing drug targets and related proteins. C. The figure displays the current potential signaling pathways and 
mechanisms of FCGR3B and BTN3A1 in IgAN. D. The figure showcases the current potential signaling pathways 
and mechanisms of PLA2R1 and NFKB1 in MN)
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reports have suggested an association between copy number variations (CNVs) in the 
FCGR3B gene and susceptibility to systemic lupus erythematosus (SLE) [44, 45]. SLE is 
an immune complex-mediated disease, and a decrease in FCGR3B copy numbers results 
in reduced expression of neutrophil FcγRIIb, diminishing the clearance of immune com-
plexes. This leads to their deposition in the kidneys and joints, promoting inflammatory 
reactions. IgAN is characterized by the deposition of immune complexes as well. Recent 
clinical studies have shown a downregulation of extracellular vesicle lncRNA G21551 
[46], which is the closest protein-coding gene to FCGR3B, in IgAN patients. This sup-
ports the aforementioned disease correlation. Additionally, a Chinese study has sug-
gested potential pathogenic roles for FCGR2B and FCRLB in IgAN [47], indicating that 
Fc family proteins may play a crucial role in the pathogenesis of IgAN.

Butyrophilin (BTN) belongs to the immunoglobulin (Ig) superfamily and is a trans-
membrane protein. The BIN3A family, also known as CD277, is a subfamily of BIN mol-
ecules [48]. The significance of BTN3A in vivo is associated with its regulatory role in 
immune cells. Vγ9Vδ2 T cells are considered the first line of defense during infection 
and have been confirmed to possess potent anti-tumor activity [49]. Upon activation, 
they release various cytotoxic molecules and inflammatory factors [50]. Additionally, 
these cells play a role in antigen presentation and regulation of other immune cells, such 
as dendritic cells, T cells, and B cells [51, 52], crucial in infectious diseases [53], tumors 
[54, 55], and maintaining autoimmune balance [56]. Moreover, research indicates that 
IgAN is associated with clonal expansion of γδ T cells in the blood and kidneys. This 
expansion is correlated with disease progression and may contribute to immunopathol-
ogy [57]. Studies suggest that Vγ9Vδ2 T cells are specifically activated by small molecule 
intermediates, phosphoantigens (pAgs), in the mevalonate pathway. This process heavily 
depends on the cytoplasmic B30.2 domain of BTN3A [58]. Recent research published 
in NATURE suggests that selective blockade of the interaction between BTN3A1 and 
BTN2A1 may selectively inhibit abnormal activation of Vγ9Vδ2 T cells in autoimmune 
diseases [59]. Clinical studies have confirmed the effectiveness of the humanized anti-
BTN3A monoclonal antibody (ICT01) against solid tumors [60] and hematological 
malignancies. However, there is currently no research elucidating the direct relation-
ship between BIN3A and IgA nephropathy. Our study results indicate for the first time 

Table 5  Candidate drug prediction in this study
Outcome Term P-value Odds 

Ratio
Com-
bined 
Score

Genes

MN menadione CTD 00007386 0.003 37,720 216,145 PLA2R1;NFKB1
TERT-BUTYL HYDROPEROXIDE CTD 00007349 0.004 37,318 201,717 PLA2R1;NFKB1
Decitabine CTD 00000750 0.008 36,400 175,317 PLA2R1;NFKB1
hydrogen peroxide CTD 00006118 0.019 34,654 139,496 PLA2R1;NFKB1
7646-79-9 CTD 00000928 0.023 33,812 126,214 PLA2R1;NFKB1
butein CTD 00001872 0.001 1998.8 13,617 NFKB1
Tyrphostin AG 1478 TTD 00011607 0.001 1998.8 13,617 NFKB1
DIHYDREXIDINE TTD 00007580 0.001 1998.8 13,617 NFKB1
N-phenyl-1 H-pyrazole-3-carboxamide TTD 
00009559

0.001 1998.8 13,617 NFKB1

chlorpropamide CTD 00005649 0.001 1998.8 13,617 NFKB1
IgAN ciclopirox HL60 DOWN 0.006 332.3 1695 BTN3A1

clozapine CTD 00005693 0.012 160.3 703 FCGR3B
meclofenoxate HL60 UP 0.038 50.8 166 FCGR3B
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that BIN3A may be an important potential drug target for IgA nephropathy, but further 
research is needed to confirm this.

In 2009, M-type phospholipase A2 receptor 1 (PLA2R1) was identified as the primary 
antigen for adult membranous nephropathy (MN), significantly advancing both basic 
and clinical research [61, 62]. PLA2R1 belongs to the mannose receptor family, with a 
relative molecular weight of 180 kDa. Its extracellular segment contains one fibronectin 
type II domain (FNI). The FNI domain is highly conserved in molecular structure and 
plays a role in binding and clearing collagen [63]. PLA2R can bind to collagen I and IV 
under the mediation of FNII, and this interaction may be one of the mechanisms leading 
to proteinuria in PLA2R-associated MN [64–66]. The association between PLA2R1 gene 
variations and susceptibility to idiopathic membranous nephropathy (IMN) has been 
well established. This association has proven valuable in the diagnosis of IMN, serving as 
an important diagnostic hint and, to some extent, a substitute for renal biopsy. Thus, rel-
evant indicators have been rapidly applied in clinical practice, aligning with our research 
findings. Additionally, clinical studies have shown a significant correlation between the 
titers of anti-PLA2R1 antibodies and the severity of MN deposition, making it a prog-
nostic biomarker for MN [67]. Traditional nonspecific and toxic immunosuppressive 
regimens for MN treatment often lead to side effects such as bone marrow toxicity, 
infections, cancer, and kidney toxicity, raising concerns. Further research focusing on 
interventions targeting podocyte PLA2R, such as the use of anti-CD20 monoclonal anti-
body rituximab, provides a clear pathophysiological basis for specific targeting of B cell 
lineages to prevent antibody production and subepithelial deposition, offering a promis-
ing alternative in the management of MN [68].

Nuclear Factor Kappa-B (NFKB) is a widely distributed transcription factor family that 
includes RelA (p65), RelB, p52, p50, and c-Rel subunits [69]. This family selectively binds 
to the B cell κ-light chain enhancer, regulating downstream gene expression. The NFKB 
pathway activation can be classified into two types: classical and non-classical. The clas-
sical type exhibits rapid and transient transcriptional activity after NFKB activation, 
regulating the expression of various pro-inflammatory genes critical for inflammatory 
response mediation [70]. Non-classical NFKB pathway activation occurs through TNF 
receptor superfamily-related signaling pathways, processing NFKB precursor protein 
p100 into mature NFKB dimers, mediating sustained NFKB dimer functionality, poten-
tially playing a crucial role in immune response regulation [71]. The association between 
NFKB genes and susceptibility to membranous nephropathy (MN) has been validated 
in several studies. A genome-wide association study (GWAS) on primary MN identified 
NFKB1 as a significantly risk-associated locus for MN (OR = 1.25, P = 3.4 × 10–12) [28]. 
Consistent with this result, another study using microarray datasets identified NFKB1 as 
a differentially expressed gene (DEG) in MN [72]. Elevated serum levels of NFKB were 
observed in patients with chronic glomerulonephritis (CGN), including focal segmental 
glomerulosclerosis, minimal change disease, and membranous nephropathy, although 
urinary NFKB levels were not correlated with CGN [73]. The underlying mechanisms of 
MN renal pathology are not fully elucidated, but oxidative stress and.

inflammation are involved in downstream molecular mechanisms triggered by 
immune complex deposition and complement activation. Recent research has identi-
fied podocyte-specific genes expressed in the glomeruli of MN patients, enriched with 
NFKB targets [74]. Increased expression of phosphorylated NFKB p65 protein in MN 
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serum receptors suggests activation of the inflammatory pathway [75]. Highlighting the 
disease mechanisms aims to discover new therapeutic drugs, with many traditional Chi-
nese medicines (Moshen granule [76], Sanqi oral solution [77], and Zhen-Wu-tang [78]) 
and compounds isolated from herbal medicines (such as Tripterygium wilfordii multi-
glycosides [79], curcumin [80], betulinic acid [81], and coumarin glycosides [82]) being 
considered potential regulators of the NFKB molecular pathway.

Additionally, it is crucial to acknowledge the limitations of this study. (1) This study 
relies on GWAS data and pQTL analysis, with the interpretation of these data influenced 
by the associations between genotype and phenotype. Although MR analysis can reveal 
causal relationships to some extent, its conclusions depend on the effects of genetic vari-
ation on the target proteins. Therefore, the identified drug targets mainly reflect protein 
changes under genetic influences and may not comprehensively represent all influencing 
factors, especially environmental and other non-genetic factors. (2) The samples used 
in GWAS and pQTL studies are predominantly from European populations, which may 
limit the generalizability of the results to other ethnic groups. (3) Limitations of exter-
nal validation: Although we utilized data from multiple sources for external validation, 
the identified drug targets and their interactions require further experimental validation 
and clinical research to confirm their clinical relevance and therapeutic potential. (4) In 
drug target prediction, the DSigDB database relies on known interactions between drugs 
and proteins. Since the prediction of drug-target interactions is based on existing gene 
expression data, this approach may lead to false positives. (5) Further molecular docking 
and animal experiments should be conducted in future studies to validate the findings.

Conclusions
In conclusion, a series of studies in this research indicate that genetically. determined 
levels of plasma proteins PLA2R1 and NFKB1 causally impact the risk of membranous 
nephropathy, while levels of FCGR3B and BTN3A1 causally relate to the risk of IgA 
nephropathy.
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