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Abstract 

Background: Regulatory T cells (Tregs) play a critical role in shaping the immunosup-
pressive microenvironment within tumors. Investigating the role of Tregs in Clear cell 
renal cell carcinoma (ccRCC) is crucial for identifying prognostic markers and therapeu-
tic targets for ccRCC.

Methods: Weighted gene co-expression network analysis (WGCNA) was utilized 
to pinpoint modules related to Treg infiltration in TCGA-KIRC samples. Following 
this, consensus clustering was employed to derive two clusters associated with Treg 
infiltration in ccRCC. A prognostic model was then developed using the gene module 
associated with Treg infiltration. We then evaluated the ability of the prognostic model 
to predict ccRCC overall survival and demonstrated that RCN1 can be used as a target 
to predict ccRCC prognosis.

Results: We deduce that the two clusters associated with Treg infiltration exhibit dis-
tinct compositions of the immune microenvironment, pathway activations, prognosis, 
and drug sensitivities commonly utilized in ccRCC treatment. Furthermore, a 7-gene 
model risk score, developed based on ccRCC Treg infiltration, proved to be a reli-
able prognostic marker in both training and validation cohorts. Additionally, survival 
analysis indicated that RCN1 serves as a reliable prognostic factor for ccRCC. Single-cell 
sequencing analysis revealed that RCN1 is predominantly expressed in tumor cells. 
A pan-cancer analysis highlighted that RCN1 is linked with poor prognosis and the acti-
vation of inflammatory response pathways across various cancers.

Conclusion: We developed a prognostic model associated with Treg infiltration, 
which facilitates the clinical categorization of ccRCC progression. Moreover, our find-
ings underscore the significant potential of RCN1 as a ccRCC biomarker.
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Introduction
Renal cell carcinoma (RCC) accounts for 2% of all global cancer diagnoses, with its 
incidence rate gradually increasing. RCC is characterized by a variety of histological 
subtypes, each with distinctive pathological features. Clear cell renal cell carcinoma 
(ccRCC), which represents around 75% of all RCC instances, arises from the proxi-
mal tubular cells within the nephron and is the most common subtype [1–3]. Surgical 
removal at an early stage is considered highly advantageous for patients with ccRCC, 
yet about 30% of patients may face recurrence or metastasis after the tumor is removed. 
Antiangiogenic treatments, such as Sunitinib and Pazopanib, have shown effectiveness 
in managing metastatic RCC [4, 5]. however, challenges like resistance and recurrence 
persist, with some patients demonstrating innate resistance to these targeted therapies 
[6, 7]. Thus, the identification of early prognostic biomarkers is crucial for improving the 
treatment outcomes for ccRCC.

In the dynamic interplay between cancer progression and host immunity, regula-
tory T cells (Tregs) emerge as pivotal players, especially in the context of RCC. Char-
acterized by their immunosuppressive capabilities, Tregs contribute significantly to the 
tumor microenvironment by promoting immune tolerance and enabling tumor escape 
from immune surveillance [8, 9]. In RCC, a malignancy marked by its resistance to tra-
ditional chemotherapy and its intricate interactions with the immune system, the role 
of Tregs has garnered considerable attention. These cells not only facilitate an immuno-
suppressive milieu conducive to cancer growth and dissemination but also impact the 
efficacy of emerging immunotherapeutic strategies [10, 11]. Understanding the mecha-
nisms through which Tregs exert their influence in RCC is crucial for unveiling poten-
tial therapeutic targets. This involves exploring the balance between Treg-mediated 
immunosuppression and tumor-directed immune responses, the impact of Tregs on the 
effectiveness of current RCC treatments, and the potential for therapeutic modulation of 
Treg activity as a means to enhance anti-tumor immunity [12, 13]. Given the increasing 
incidence of RCC and the urgent need for more effective treatment modalities, dissect-
ing the complex role of Tregs in renal carcinogenesis and progression holds promise for 
improving patient outcomes in this challenging malignancy.

In the realm of renal cell carcinoma (RCC), the search for reliable prognostic models 
is paramount for advancing patient management and tailoring personalized treatment 
strategies. RCC, with its diverse histological subtypes and complex biological behavior, 
poses significant challenges in predicting outcomes and selecting optimal therapeutic 
approaches [14–16]. Despite advances in diagnostic techniques and the development of 
targeted therapies, the prognosis for RCC patients, particularly those with advanced or 
metastatic disease, remains unpredictable. The advent of prognostic models based on 
genetic, molecular, and clinical parameters has opened new avenues for the early iden-
tification of high-risk patients, guiding treatment decisions, and improving survival out-
comes [17–20]. These models integrate various prognostic factors to generate a more 
accurate prediction of disease progression, recurrence, and patient survival, thereby 
facilitating a more stratified approach to RCC treatment [21–24]. As the understanding 
of RCC’s underlying molecular mechanisms continues to expand, the development and 
validation of these prognostic models become increasingly crucial for enhancing clinical 
decision-making and advancing the overall management of RCC.
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Reticulocalbin-1 (RCN1), a protein found in the endoplasmic reticulum, is integral 
to maintaining calcium balance and preventing apoptosis triggered by ER stress [25]. 
Elevated RCN1 expression, linked to cancer development and invasion, has been noted 
across various cancers, including glioblastoma, non-small cell lung cancer, renal cell car-
cinoma, and oral squamous cell carcinoma [26–29]. Furthermore, increased RCN1 lev-
els are correlated with resistance to sorafenib in hepatocellular carcinoma and resistance 
to doxorubicin in uterine cancer cells [30, 31]. In contrast, reducing RCN1 expression 
has been shown to curb cell growth and induce apoptosis through the activation of AKT 
and PTEN pathways in prostate cancer cells [32], highlighting its potential as a thera-
peutic target.

In our study, the CIBERSORT algorithm was applied and revealed a notable correlation 
between increased Treg presence and adverse patient outcomes in TCGA-KIRC cohort. 
Next, we used weighted gene co-expression network analysis (WGCNA) to identify gene 
modules that are closely related to Treg infiltration in ccRCC. Building upon these find-
ings, our study ventured into stratifying ccRCC patients based on genes related to Treg 
cells infiltration, unveiling two distinct clusters with differing prognostic outcomes. We 
then found that there were distinct differences in immune infiltration, pathway activa-
tion, and predictability of drug effectiveness between the two clusters. Moreover, we 
constructed a prognostic model based on a gene module related to Treg cell infiltration, 
and this model’s risk score demonstrated good performance in predicting the progno-
sis of ccRCC patients in both the training and validation sets. Subsequently, RCN1 was 
identified among the 7 genes used to construct the prognostic model and could predict 
overall survival in ccRCC. Furthermore, A comprehensive analysis across multiple can-
cer types revealed that RCN1 is associated with unfavorable outcomes and the activation 
of pathways related to inflammatory responses in a wide range of cancers. Accordingly, 
a prognostic model based on genes associated with Treg cell infiltration was developed 
and validated. This model offers potential prognostic utility for clinical applications, 
highlighting the possible importance of RCN1 in cancer progression.

Methods
Dataset source and data pre‑processing

The analyses involved patients from two ccRCC cohorts (E-MTAB-1980 [33], Braun 
ccRCC 2020 [34]) and TCGA-KIRC. Patients without survival information and RNA 
sequencing (RNA-seq) data were excluded from the analysis. The clinical data and tran-
scriptome expression data of E-MTAB-1980 and Braun ccRCC 2020 were downloaded 
from ArrayExpress (https:// www. ebi. ac. uk/ biost udies/ array expre ss/ studi es) and related 
original publication. Transcriptome data, measured as TPM (transcripts per million) 
values, along with clinical information, were obtained from the Genomic Data Com-
mons (GDC, https:// portal. gdc. cancer. gov/) through the use of the ’TCGAbiolinks’ 
package in R. The raw data for the single-cell RNA sequencing (scRNA-seq) study, iden-
tified as phs002065.v1.p1 [35], were retrieved from the Single Cell Portal (https:// singl 
ecell. broad insti tute. org/ single_ cell/ study/ SCP12 88/ tumor- and- immune- repro gramm 
ing- during- immun other apy- in- advan ced- renal- cell- carci noma# study- summa ry). Pro-
cessing of the scRNA-seq data was conducted using the ’Seurat’ package in R, follow-
ing the guidelines provided in the accompanying tutorial. In summary, cells exhibiting 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies
https://portal.gdc.cancer.gov/
https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary
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gene expression levels below 300 or above 6500, as well as those with mitochondrial 
gene expression exceeding 10%, were filtered out. The normalization and scaling of raw 
data were accomplished through the SCTransform function, preceding the execution of 
principal component analysis (PCA). To mitigate batch effects in the isolated scRNA-
seq raw data, the "Harmony" package in R was employed. Distinct cell clusters within 
each scRNA-seq dataset were discerned through unsupervised clustering analysis and 
the unified manifold approximation and projection (UMAP) technique. Subsequently, 
each identified cell cluster was annotated utilizing known markers specific to cell types.

Weighted gene co‑expression network analysis (WGCNA)

Gene co-expression networks were developed utilizing the TCGA-KIRC dataset through 
the ’WGCNA’ package in R. Pearson’s correlation coefficient was calculated for each 
gene pair to create a similarity matrix. The ’WGCNA’ package includes a power func-
tion capable of transforming this similarity matrix into an adjacency matrix. For all soft 
thresholds (b) yielding an R^2 greater than 0.9, we selected the automatically deter-
mined value of b (b = 5) as suggested by the WGCNA’s pickSoftThreshold function. In 
line with the ’WGCNA’ guide, we set the network merging criterion at a height of 0.25. 
We adhered to the default parameters provided by WGCNA for subsequent analyses 
unless stated otherwise.

Gene set variation analysis (GSVA) and assessment of immune cell infiltration

The GSVA analysis was conducted utilizing the ’GSVA’ package in R to derive gene set 
enrichment scores. These scores facilitated the comparison of pathway enrichments, 
distinguishing between upregulated and downregulated pathways in the group with 
high-risk scores compared to those with low-risk scores. The gene sets for GSVA were 
acquired from the Molecular Signatures Database (MSigDB). Furthermore, the quanti-
fication of immune cell infiltration within TCGA-KIRC datasets was achieved through 
the application of the CIBERSORT algorithm, which was based on normalized gene 
expression data.

Acquisition of Treg cell‑related clusters

A gene module linked to Treg cell infiltration was identified, followed by a univariate 
Cox regression analysis on the genes within this module. Out of these, 779 genes dem-
onstrating a significant association with survival (P < 0.05) in the univariate analysis 
were selected for further analysis using the ’ConsensusClusterPlus’ package in R, aimed 
at clustering patients from the TCGA-KIRC cohort. The determination of the opti-
mal number of clusters (K) was based on the consensus value and the cumulative dis-
tribution function analysis, resulting in an optimal K value of 2. The Nearest Template 
Prediction (NTP) technique offers an efficient approach for making classification pre-
dictions based on a signature gene list and a test dataset, allowing for the assessment of 
predictive confidence in gene expression data for each patient. In our research, the top 
50 upregulated genes from each cluster within TCGA-KIRC cohort were utilized to pre-
dict cluster membership in the E-MTAB-1980 cohort using the ’MOVICs’ package in R.



Page 5 of 23Qixin et al. BioData Mining           (2024) 17:51  

Establishment of Treg‑related prognostic model

A prognostic model associated with Treg cells infiltration was developed using two clear 
cell renal cell carcinoma (ccRCC) cohorts: TCGA-KIRC served as the training dataset, 
while E-MTAB-1980 was utilized for validation. From the previously mentioned 79 
prognosis-related genes, key genes pertinent to Treg cell infiltration and patient prog-
nosis were identified using two machine learning approaches: the least absolute shrink-
age and selection operator (LASSO) logistic regression and the random forest method. 
Initially, the ’glmnet’ package in R was utilized to select 21 prognostic genes (including 
CIB1, LGALS2, FIS1, EIF4EBP1, AUP1, ISG15, NDUFV1, GAMT, TRAPPC6A, NME4, 
NUTF2, B3GAT3, STAP2, HSBP1, PAXX, RCN1, TRAPPC2L, NUDT14, YDJC, PLAC9, 
and INMT) using LASSO regression with tenfold cross-validation. Subsequently, the 
random forest algorithm, implemented through the ’randomForestSRC’ package in R, 
was employed to refine the selection to 10 features with prognostic significance. These 
features include ISG15, TRAPPC6A, HSBP1, STAP2, S100A11, RCN1, LGALS2, CIB1, 
BOP1, and PSENEN. Finally, seven common genes (CIB1, LGALS2, ISG15, TRAP-
PC6A, STAP2, HSBP1, and RCN1) were obtained to build the multivariate Cox regres-
sion models (both using stepwise regression). The risk score was calculated as follows: 
0.411 × (CIB1 expression)-0.110 × (LGALS2 expression) + 0.273 × (ISG15 expres-
sion)-0.258 × (TRAPPC6A expression)-0.272 × (STAP2 expression)-0.450 × (HSBP1 
expression) + 0.376 × (RCN1 expression).The risk score for both the TCGA-KIRC and 
validation cohorts was calculated using the identical model score threshold. Patients 
were categorized into low- and high-risk groups based on the median value of the risk 
scores. The R ’survival’ package was then utilized to compare the overall survival (OS) 
differences between these groups.

Nomogram construction

A nomogram was constructed to incorporate both the risk score, age and tumor grade, 
utilizing the regplot function within the ’rms’ package in R. To evaluate the predictive 
accuracy of our model, a receiver operating characteristic (ROC) curve was generated. 
Furthermore, to depict the variance between the predicted outcomes of our model and 
the actual observed patient survival, both calibration curves and decision curve analysis 
(DCA) were plotted.

Chemotherapeutic response prediction

Predictions of chemotherapeutic responses for each cluster were made utilizing the 
Genomics of Drug Sensitivity in Cancer (GDSC, https:// www. cance rrxge ne. org/), the 
largest available pharmacogenomics database. Four chemotherapeutic agents frequently 
used in ccRCC treatment—sorafenib, axitinib, suunitinib, and Gemcitabine—were cho-
sen for detailed analysis. These predictions were carried out using the ’pRRophetic’ 
package in R. Ridge regression was employed to estimate the half-maximal inhibitory 
concentration (IC50) for the samples, and the prediction’s accuracy was verified through 
tenfold cross-validation against the GDSC’s training dataset. The default settings were 
used for all parameters, with the exception of specifying the tissue type as ’kidney’.

https://www.cancerrxgene.org/
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Pan‑cancer analysis

The normalized mRNA expression data and clinical details for the TCGA pan-cancer 
cohorts (referenced in Supplementary Table 1) were acquired from the UCSC Xena 
Browser (https:// xenab rowser. net/ datap ages/). The prognostic significance of RCN1 
across different types of cancer prognosis was evaluated using univariate Cox regres-
sion analysis and Kaplan–Meier modeling. RCN1 expression data, treated as a con-
tinuous variable, was incorporated into the univariate Cox regression. Additionally, 
RCN1 expression was dichotomized for Kaplan–Meier survival analysis, with the 
division threshold determined by the "surv-cutpoint" function from the "survminer" 
R package (version 0.4.9). Both the log-rank p-value from the Kaplan–Meier method 
and the hazard ratio (HR) along with a 95% confidence interval (95%CI) were calcu-
lated. The results were visually summarized in a heatmap format.

Statistical analysis

Survival differences across groups were analyzed with Kaplan–Meier curves and the 
log-rank test. Pearson and Spearman analyses were utilized to compute correlation 
coefficients. For normally distributed continuous data, Student’s t-test was applied, 
while the Mann–Whitney U test was employed for data not following a normal distri-
bution. When conducting comparisons across more than two groups, nonparametric 
data were analyzed using the Kruskal–Wallis test, and parametric data were examined 
with one-way ANOVA. These statistical procedures were carried out in R software 
(version 4.3.1), with P values < 0.05 deemed to indicate statistical significance.

Results
Tregs infiltration was associated with poor prognosis in ccRCC 

Initially, the CIBERSORT algorithm was employed to evaluate the proportion of 
immune cell infiltration in patients. Within TCGA-KIRC cohort, patients exhibiting 
a higher level ofTregs infiltration demonstrated a poorer prognosis (Fig. 1A). Moreo-
ver, patients with advanced tumor stage and higher tumor grade exhibit higher Treg 
cells infiltration (Fig. 1B-C). Given the observation that an increased presence of Treg 
cells was linked to a poorer prognosis, we conducted a weighted gene co-expression 
network analysis (WGCNA) to identify the module associated with Treg cells infiltra-
tion (Fig. 1D). A soft threshold power of β = 5, achieving a scale-free fit index (R^2) of 
0.90, was chosen to establish a scale-free network (Figure S1). Moreover, the correla-
tion heatmap indicates that, within TCGA-KIRC, the yellow module showed a nega-
tive correlation with patient’s overall survival time (r = -0.14, P = 0.001) and a positive 
correlation with Treg cells infiltration (r = 0.19, P = 7e-06) (Fig. 1E).

Stratification of ccRCC based on Tregs infiltration

Utilizing the genes from the yellow module along with survival data from the TCGA-
KIRC dataset, a univariate Cox regression analysis was conducted, identifying 79 
genes associated with overall survival (OS) in TCGA-KIRC (Figure S2A). Through 
the use of the R ConsensusClusterPlus package for consistent clustering within the 
TCGA-KIRC dataset based on these 79 prognostic genes, two distinct clusters were 

https://xenabrowser.net/datapages/
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identified: Cluster 1, comprising 354 cases, and Cluster2, consisting of 169 cases 
(Fig.  2A and Figure S2B). PCA analysis also showed that the gene expression pat-
tern in these two clusters were distinct (Fig.  2B). Survival analysis further revealed 
that individuals in the Cluster2 group exhibited a worse prognosis compared to those 
in the Cluster1 group (Fig.  2C). The heatmap illustrated variations in the expres-
sion patterns of the 79 genes between Cluster1 and Cluster2 (Fig.  2D). Addition-
ally, the chi-squared test revealed that patients in Cluster2 had higher tumor grades, 
more advanced stages, and poorer survival outcomes compared to those in Cluster1 
(Fig. 2E). Next, we verified the existence of these two clusters in the E-MTAB-1980 
cohort using the NTP algorithm (Fig. 2F). Patients in Cluster2 still has a worse prog-
nosis than patients in Cluster1 (Fig. 2G).

Immune infiltration and pathway enrichment differences in different clusters

The diversity of immune cell infiltration across these two clusters was analyzed using 
the ssGSEA, MCPcounter and CIBERSORT algorithms. A heatmap displayed the pro-
file of tumor-infiltrating immune cells in TCGA-KIRC patients (Fig. 3A). According 
to all three algorithms, Treg cells infiltration in Cluster2 was significantly increased 

Fig. 1 Tregs infiltration was associated with poor prognosis in ccRCC. A The Kaplan–Meier analysis 
demonstrated the relationship between the infiltration of Tregs and overall survival (OS) within the TCGA 
KIRC cohorts. Patients were categorized into "high" and "low" groups according to the median score for Tregs 
infiltration, derived from CIBERSORT analysis. Differences in Treg cell infiltration in different clinical stages (B) 
and different clinical grades (C) in TCGA-KIRC cohort. D Dendrogram of cluster modules analyzed by WGCNA 
results, where each color represents a different co-expression module and the top branches represent genes. 
E Correlation analysis between various phenotypes and co-expression modules revealed that genes within 
the yellow module showed a positive correlation with Treg cell infiltration and negative correlation with 
overall survival
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compared to Cluster1; Moreover, analysis by three of these algorithms revealed that 
CD8 + T cell infiltrations were notably lower in Cluster2. Taken together, these find-
ings indicate that Cluster2 exhibits a distinct immune phenotype compared to Clus-
ters1, characterized by higher Treg cells infiltration and lower levels of immune 
activation. To illustrate the activation of signaling pathways within each cluster, 
GSVA enrichment scores were computed using gene sets from the HALLMARK 
pathways in MSigDB. Notably, Cluster2, in contrast to Cluster1, was distinguished 
by the enrichment of tumor-promoting pathways, such as Hypoxia, EMT and PI3K 
AKT Mtor SIGNALING pathway. While, Cluster1 was characterized by enrichement 

Fig. 2 Stratification of ccRCC based on Tregs infiltration. A The consensus clustering plot shows that the 
TCGA-KIRC samples are divided into two clusters. B Principal component analysis of two clusters. C Kaplan–
Meier survival analysis shows the difference in OS between the two clusters in TCGA-KIRC cohort. D Heatmap 
of expression patterns of 79 genes in two clusters in the TCGA-KIRC cohort. E Donut plot of survival status, 
tumor grade, and tumor stage for the two patient groups. F Classification predictions for E-MTAB-1980 
cohort were carried out utilizing upregulated genes specific to TCGA-derived clusters, employing the Nearest 
Template Prediction (NTP) algorithm. G Kaplan–Meier survival analysis shows the difference in OS between 
the two clusters in E-MTAB-1980 cohort
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of metabolic pathways, including fatty acid metabolism and bile acid metabolism 
(Fig. 3B).

Differences in immunotherapy efficacy and drug sensitivity between the two clusters

Then, the expression levels of HLA family genes and immune checkpoint markers across 
these two subtypes were examined within both TCGA-KIRC and E-MTAB-1980 data-
sets. The expression of HLA family genes and immune checkpoint genes in Cluster2 
is lower than that in Cluster1 (Fig. 4A-B). Next, we verified the existence of these two 

Fig. 3 Immune infiltration and pathway enrichment differences in different clusters. A A heatmap illustrates 
the disparities in immune cell infiltration among different subtypes, analyzed using the ssGSEA, MCPcounter, 
and Cibersort algorithms. Statistical discrepancies were evaluated using the Kruskal-Walli’s test. B Differences 
in HALLMARK pathway activities scored by GSVA between Cluster1 and Cluster2 groups. The red histogram 
represents pathways upregulated by Cluster2 and the blue represents pathways upregulated by Cluster1

Fig. 4 Differences in immunotherapy efficacy and drug sensitivity between the two clusters. Boxplots depict 
variations in the expression of immune-related and immune checkpoint genes across different subtypes 
within the TCGA-KIRC (A) and E-MTAB-1980 cohort (B). C Classification predictions for Braun ccRCC 2020 
cohort were carried out utilizing upregulated genes specific to TCGA-derived clusters, employing the Nearest 
Template Prediction (NTP) algorithm. D The percentage of patients with response to immunotherapy in 
different subtypes in Braun ccRCC 2020 cohort. SD, stable disease; PD, progressive disease; CR, complete 
response; PR, partial response. E Kaplan–Meier survival analysis shows the difference in OS between the 
two clusters in Braun ccRCC 2020 cohort. F Differences in chemotherapy responsiveness between the two 
clusters in the TCGA-KIRC cohort

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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clusters in the Braun ccRCC 2020 cohort using the NTP algorithm (Fig. 4C). Addition-
ally, we categorized treatment responses into a binary model and observed that the 
proportion of patients exhibiting stable or progressive disease in Cluster2 was greater 
compared to Cluster1 (Fig. 4D). Moreover, Survival analysis further revealed that indi-
viduals in the Cluster2 group also exhibited a worse prognosis compared to those in the 
Cluster1 group (Fig. 4E). Given the potential for patients with ccRCC to develop resist-
ance to various drugs, we assessed the responsiveness of the two clusters to four com-
monly used ccRCC therapeutic agents: gemcitabine, sorafenib, axitinib, and sunitinib. 
We developed a predictive model utilizing ridge regression based on the GDSC cell line 
dataset and verified its predictive reliability through tenfold cross-validation. We then 
calculated the half-maximal inhibitory concentration (IC50) for samples within the 
TCGA-KIRC dataset using the predictive models for these drugs. The findings indicated 
that patients in Cluster 1 exhibited a higher sensitivity to these therapeutic treatments 
(Fig. 4F).

Construction and validation of Treg infiltration‑related prognostic model

For the purpose of enhancing the clinical relevance of genes associated with Treg infil-
tration in prognosis assessment, we utilized two machine learning methods to pinpoint 
key genes among all 79 Treg infiltration-related prognostic genes. LASSO and random 
forest algorithms identified 21 and 10 key genes, respectively (Figure S3A-B). Sub-
sequently, seven genes that were common to both algorithms: CIB1, LGALS2, ISG15, 
TRAPPC6A, STAP2, HSBP1, and RCN1 were chosen to develop a multivariate Cox 
regression mode (Figure S3C). Furthermore, a seven-gene risk model was employed to 
compute the risk score for each patient, subsequently categorizing patients into high-
risk and low-risk subgroups. Patients with higher risk score had poorer prognosis in 
TCGA-KIRC cohort (Fig.  5A). Simultaneously, the AUC (Area Under the Curve) val-
ues at 1, 2, 3, and 5  years indicated that the risk score was significantly predictive of 
overall survival (OS) in TCGA-KIRC cohort (Fig. 5B). Figure 5C displays the risk score 
distributions, overall survival time associated mRNA expression profiles for the TCGA-
KIRC cohort. Protective mRNAs (HSBP1, STAP2, LGALS2 and TRAPPC6A) exhibited 
higher expression levels in the low-risk group, whereas the other mRNAs (RCN1, CIB1 
and ISG15) showed higher expression in the high-risk group. Additionally, the high-risk 
group have more deaths compared to the low-risk group (Fig. 5C). Moreover, patients 
with advanced tumor stage and higher tumor grade exhibit higher model risk score 
(Fig. 5D-E). Patients with higher risk score has more Treg cells infiltration (Fig. 5F). To 
confirm the prognostic importance of the risk score, the same calculation was applied 
to derive the Treg infiltration-related risk score in a validation cohort (E-MTAB-1980). 
The risk score demonstrated a comparable prognostic value in these cohorts, along with 
strong predictive accuracy for overall survival (Fig. 5G-H). And the risk score distribu-
tion plot also shows that the E-MTAB-1980cohort has the same expression pattern as 
TCGA-KIRC cohort (Fig. 5I).

Establishment of the nomogram model based on risk score

To improve the predictive capability of the aforementioned risk scores, a nomogram 
model was developed by integrating the risk score, age and tumor grade through 
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Fig. 5 Construction and validation of Treg infiltration-related prognostic model. A Kaplan–Meier survival 
analysis shows the difference in OS between high-risk and low-risk score groups in the TCGA-KIRC cohort. 
B AUC values of risk score for 1-, 2-, 3- and 5-year OS in TCGA-KIRRC cohort. C The distribution of risk score, 
vital status and the prognostic gene expression patterns in the TCGA-KIRC cohort. Differences in model risk 
score in different clinical stages (D) and different clinical grades (E) in TCGA-KIRC cohort. F Differences in Treg 
cell infiltration across risk score groups in the TCGA-KIRC cohort. G Kaplan–Meier survival analysis shows the 
difference in OS between high-risk and low-risk score groups in the E-MTAB-1980 cohort. H AUC values of 
risk score for 1-, 2-, 3- and 5-year OS in E-MTAB-1980 cohort. I The distribution of risk score, vital status and the 
prognostic gene expression patterns in the E-MTAB-1980 cohort
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multivariable Cox regression analysis (Fig.  6A). Calibration curves for disease-specific 
survival (DSS) at 3 and 5 years indicated a strong concordance between the predicted 
survival probabilities and the actual outcomes, highlighting the nomogram’s reliability in 
forecasting survival. Furthermore, decision curve analysis (DCA) was conducted, reveal-
ing that the nomogram’s prognostic accuracy surpassed that of the individual variables 
(Fig.  6B-C). Additionally, the outcomes of our investigation revealed that the nomo-
gram’s predicted AUC outperformed the risk score’s AUC in both the TCGA-KIRC and 
E-MTAB-1980 cohorts (Fig. 6D-E). We applied two distinct methods to pinpoint drug 
candidates showing increased sensitivity in patients with high Treg infiltration-related 
risk scores, utilizing data on drug responses derived from CTRP and PRISM. Initially, 
a differential drug response analysis was conducted to compare high vs. low Treg infil-
tration-related risk score groups, aiming to discover compounds with notably lower 
estimated AUC values in the high-risk group (log2FC > 0.10). Subsequently, we identi-
fied compounds exhibiting a negative correlation between AUC values and Treg infil-
tration-related risk scores by assessing the Spearman correlation coefficient (Spearman’s 
r < -0.40 for CTRP and -0.35 for PRISM). This approach identified 11 compounds from 
PRISM (including rigosertib, MK-2461, vindesine, vinblastine, dolastain-10, talazoparib, 
verubulin, NVP-AUY922, topotecan, rubitecan and echinomycin) and four from CTRP 
(including uprosertib, leptomycin B, paclitaxel, topotecan, CR-1-31B, SB-743921 and 
BI-2536), all of which displayed lower estimated AUC values in the high-risk group and a 
negative correlation with the Treg infiltration-related risk score (Fig. 6F).

Single‑cell sequencing analysis based on RCN1 expression

Next, we performed survival analysis on the seven genes of the risk model in TCGA 
and E-MTAB-1980 cohort. Interestingly, only high expression of RCN1 indicated worse 
prognosis both in TCGA-KIRC and E-MTAB-1980 cohort (Figure S4). Therefore, we 
selected RCN1 for further analysis. We collected a single-cell sequencing data set of 
ccRCC and found that RCN1 is mainly expressed in tumor cells (Fig. 7A-B). Moreover, 
we divided patients into high RCN1 group and low RCN1 group based on the median 
RCN1 expression value of tumor cells. It was found that tumors with high expression 
of RCN1 had lower infiltration of tumor killer cells, such as NK cells, NKT cells and 
CD8 + T cells, but have more tumor-promoting cells, such as tumor-associated mac-
rophages and Treg cells (Fig. 7C). Then we used Cellchat to analyze the differences in 

Fig. 6 Establishment of the nomogram model based on risk score. A Nomogram based on Treg 
infiltration-related risk score, age and tumor grade. B Disease-specific survival calibration curves at 3, and 
5 years. C Nomogram decision curve analysis, Treg infiltration-related risk score, age and tumor grade. 
D Kaplan–Meier survival analysis shows the difference in OS between high-nomo and low-nomo score 
groups in the TCGA-KIRC cohort (left). AUC values of nomo score for 1-, 2-, 3- and 5-year OS in TCGA-KIRRC 
cohort (right). E Kaplan–Meier survival analysis shows the difference in OS between high-nomo and 
low-nomo score groups in the E-MTAB-1980 cohort (left). AUC values of nomo score for 1-, 2-, 3- and 5-year 
OS in E-MTAB-1980 cohort (right). F Analyses of Spearman correlation and differential responses for six 
compounds derived from CRTP, including comparisons of AUC values between high- and low-nomo score 
groups in response to these compounds. Additionally, Spearman correlation and differential response 
analyses for eleven compounds sourced from PRISM, accompanied by evaluations of AUC value differences 
between high- and low-nomo score groups in response to these four compounds. ‘*’ indicates P‑value ≤ 0.05, 
‘**’ indicates P‑value ≤ 0.01, ‘***’ indicates P‑value ≤ 0.001

(See figure on next page.)



Page 14 of 23Qixin et al. BioData Mining           (2024) 17:51 

Fig. 6 (See legend on previous page.)



Page 15 of 23Qixin et al. BioData Mining           (2024) 17:51  

ligand receptors of various cell types in patients in the high and low RCN1 groups. Over-
all, tumor cells with high RCN1 expression have more ligand receptor interactions with 
other cell types in the tumor microenvironment than tumor cells with low RCN1 expres-
sion. Interestingly, compared to tumor cells with low RCN1 expression, tumor cells with 
high RCN1 expression have more ligand receptor interactions with Treg cells, such as 
SPP1-CD44, MIF-(CD74 + CXCR4), MIF-(CD74 + CD44), FN1-CD44 and APP-CD74 
(Fig. 7D).

Pan‑cancer analysis of RCN1 in TCGA cohorts

Next, the expression of RCN1 in tumor versus normal tissues for 20 cancer types within 
the TCGA cohort was also investigated, revealing that RCN1 was upregulated in 60% of 
the cancers, such as BLCA, UCEC, HNSC, KIRP, COAD, LUSC, KIRC, LIHC, BRCA, 
KICH, LUAD, ESCA, and STAD (Fig.  8A). Moreover, we examined the association 
between RCN1 and the Hallmark pathways across the TCGA pan-cancer cohort, finding 
that RCN1 positively correlated with inflammatory pathway and EMT, including TNFA 
signaling pathway and inflammatory response signaling pathways, across various cancer 
types (Fig. 8B). Furthermore, the study assessed the impact of RCN1 expression on the 
survival prognosis in 32 cancer types, indicating that high RCN1 expression correlated 
with poorer survival outcomes in over 7 cancer types, including GBM, HNSC, KIRC, 
KIRP, LGG, LUAD and MESO (Fig. 8C).

Discussion
The incidence of renal cell carcinoma (RCC) is on the rise globally, with a mortality rate 
of approximately 20%. RCC is primarily categorized into three main histological sub-
types: clear cell RCC (ccRCC), papillary RCC, and chromophobe RCC, with ccRCC 
being the most common (accounting for 70–80% of all cases) and the deadliest form 
[36]. Despite technological advancements leading to the development of new diagnostic 
methods and therapeutic approaches that have improved early-stage ccRCC patient out-
comes, the overall survival rate remains unsatisfactory [37]. Therefore, identifying novel 
biomarkers for the prognosis and therapeutic targeting of ccRCC is crucial.

Recent research has highlighted the prognostic significance of Treg cells across differ-
ent cancer types. The predominance of Treg cells is linked not just to adverse outcomes 
in a range of tumors but also to the creation of an immunosuppressive tumor micro-
environment [38, 39]. Increased presence of Treg cells in tumor sites is associated with 
poorer prognosis in cancer patients [40, 41]. Remarkably, Tregs derived from tumors 
possess stronger suppressive abilities than their naturally occurring equivalents, mak-
ing them a strategic target for improving outcomes in cancer therapy [42–44]. Despite 
the challenges in manipulating Treg cells to accurately regulate immune responses, there 

(See figure on next page.)
Fig. 7 Single-cell sequencing analysis based on RCN1 expression. A UMAP visualization maps of various cell 
clusters in phs002065.v1.p1 scRNA-seq cohort. B Feature plots show the expression of RCN1 in phs002065.
v1.p1 scRNA-seq cohort. C Histogram of compositional differences among cell types from patients with 
high and low RCN1 expression. D Cell interaction analysis using CellChat. Bubble plots show all significant 
ligand-receptor pairs that contribute to the signaling sending from high and low-RCN1 malignant cellsto 
other cell types in phs002065.v1.p1 scRNA-seq cohort
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has been a growing focus on investigating Treg cell modifications in clear cell renal cell 
carcinoma (ccRCC) recently. Nonetheless, there is a significant lack of research on the 
unique roles and diagnostic potential of Treg cell in ccRCC. This deficiency highlights 
the urgent need for more comprehensive studies on the Treg subpopulations within 
ccRCC to uncover their roles in tumor diagnostics and treatment strategies. Our study 
discovered that an increased infiltration of Treg cells, estimated through the CIBER-
SORT algorithm, correlates with a poorer prognosis in patients with ccRCC. Further-
more, the tumor grading and clinical staging of patients are positively associated with 
Treg cell infiltration. These results are consistent with results from several previous 
studies.

Consensus clustering, a sophisticated method integrating multiple clustering algo-
rithms to identify stable and consistent cluster structures, has significantly impacted 
the study of cancer heterogeneity [45]. In cancer research, the application of consensus 
clustering has enabled the stratification of patients into groups with different prognos-
tic outcomes, sensitivity to treatments, and risk factors, thus offering a more nuanced 
understanding of tumor biology. Moreover, it facilitates the discovery of novel biomark-
ers and therapeutic targets by delineating the molecular profiles associated with specific 
cancer subtypes [46]. In ccRCC, A study indicates that ccRCC can be divided into four 
subtypes based on gene expression patterns, and these four subtypes are able to differen-
tiate patients with varying prognoses and sensitivities to targeted drugs [47]. In another 
study, Grigory Andreevich Puzanov identified the most aggressive ccRCC subtype asso-
ciated with metastasis using genes related to coagulation (FGA, FGG) and genes associ-
ated with changes in tumor immune characteristics (ENAM, IGFBP1, IL6) [48]. In our 
study, Given the significant role of Treg cells in determining clinical outcomes and their 
contribution to the immunosuppressive TME, it was deduced that a gene module indic-
ative of Treg cells presence in ccRCC could be utilized to formulate a prognostic model. 
This model holds potential in forecasting clinical outcomes in ccRCC cases. The result 
of analysis indicated that a high Treg cells infiltration correlates with decreased survival 
rates in the TCGA-KIRC cohort. To further assess the efficacy of Treg cells as a prognos-
tic indicator for ccRCC, patients were divided into two groups based on the expression 
of genes within an Treg cells-related module. This division revealed disparities in overall 
survival (OS) and clinical characteristics between the groups.

In our study, we explored the differential expression of HLA family genes and immune 
checkpoint markers across the two identified subtypes within both the TCGA-KIRC and 
E-MTAB-1980 datasets. Our analyses revealed that Cluster2 exhibited lower expression 
levels of these genes compared to Cluster1, suggesting a diminished immune response 
capacity that may influence treatment efficacy and disease progression. The valida-
tion of these clusters in the Braun ccRCC 2020 cohort, employing the NTP algorithm, 

Fig. 8 Pan-cancer analysis of RCN1 in TCGA cohorts. A Variations in RCN1 expression between tumor and 
normal tissues across 20 cancer types within the pan-cancer TCGA cohort. ‘*’ indicates P‑value ≤ 0.05, ‘***’ 
indicates P‑value ≤ 0.001, ‘****’ indicates P‑value ≤ 0.0001. B Enrichment analysis of HALLMARK pathways 
between tumor tissues with high and low RCN1 across 33 cancer types in TCGA cohorts, NES normalized 
enrichment score in the GSEA algorithm, FDR false discovery rates. C Overview of how RCN1 expression 
correlates with overall survival (OS) among 32 cancer types in the TCGA pan-cancer cohort

(See figure on next page.)
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further solidifies our findings and underscores the robustness of our subclassification. 
The investigation into treatment responses highlighted a significant difference in out-
comes between the two clusters. Specifically, Cluster2 demonstrated a higher propor-
tion of patients with stable or progressive disease, indicating a potential for poorer 
treatment efficacy. This observation was corroborated by survival analysis, where indi-
viduals in Cluster2 were found to have a worse prognosis than those in Cluster1. Such 
findings emphasize the importance of cluster-based stratification in predicting patient 
outcomes and guiding treatment decisions. Our exploration into drug resistance and 
responsiveness to common ccRCC therapeutic agents—gemcitabine, sorafenib, axitinib, 
and sunitinib—provides critical insights into the potential for personalized treatment 
approaches. By developing a predictive model based on the GDSC cell line dataset and 
validating its accuracy through tenfold cross-validation, we established a framework 
for estimating drug sensitivity. The calculated half-maximal inhibitory concentrations 
(IC50) for samples in the TCGA-KIRC dataset revealed that Cluster 1 patients are more 
susceptible to these treatments, suggesting a potential for tailored therapeutic strategies 
that could improve patient outcomes.

Moreover, seven genes were identified and used to develop a multivariate Cox regres-
sion model. Analysis across two ccRCC cohorts indicated that patients were stratified 
into high- and low-risk categories based on Treg infiltration-related risk scores. Patients 
in the high-risk category showed poorer overall survival than those in the low-risk cat-
egory. Tregs, known for inhibiting CD8 + T cell cytotoxicity, facilitating B-cell prolifera-
tion, and encouraging tumor growth, are implicated in the adverse outcomes seen in the 
high-risk group. This underlines the critical impact of Treg infiltration and the conse-
quential suppression of immune responses as key factors driving the poorer prognosis 
in high-risk patients compared to their low-risk counterparts. Therefore, the risk score 
derived from the prognostic model related to Treg cells serves as a potential predictor of 
overall survival in ccRCC.

Many studies have indicated that CIB1, LGALS2, ISG15, TRAPPC6A, STAP2, HSBP1, 
and RCN1 play significant roles in the progression of cancer, sensitivity to drug treat-
ment, and the survival prognosis of cancer patients [31, 49–54]. In our study, high 
expression of RCN1 was found to be associated with poorer prognosis in two ccRCC 
cohorts, hence we selected RCN1 for further investigation. Reticulocalbin 1 (RCN1) is 
a multifunctional protein residing in the endoplasmic reticulum (ER), belonging to the 
family of calcium-binding proteins. The expression of RCN1 has been documented 
across multiple tissues, highlighting its essential role in normal cellular physiology [55]. 
However, its involvement in disease processes, particularly in cancer, has garnered 
increasing attention. Research has demonstrated that RCN1 expression levels are altered 
in various types of cancer, suggesting a potential role in tumorigenesis and progres-
sion [29, 31, 56]. Elevated RCN1 expression has been associated with poor prognosis 
in several cancers, including colorectal cancer, prostate cancer, and ccRCC, implicating 
it as a potential biomarker for cancer diagnosis and prognosis [28, 32, 57]. In our study, 
single-cell sequencing analysis also showed that RCN1 is mainly expressed on tumor 
cells and patients with high RCN1 expression have higher Treg cell infiltration. Moreo-
ver, compared with tumor cells with low expression of RCN1, cellchat analysis showed 
that tumor cells with high expression of RCN1 were interacted with Treg cells through 
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SPP1-CD44, MIF-(CD74 + CXCR4), and MIF-(CD74 + CD44). Previous studied showed 
that macrophage migration inhibitory factor (MIF) promotes tumor growth by increas-
ing Tregs generation [58]. These results also reveal to a certain extent the relationship 
between high RCN1 expression and increased Treg cell infiltration, and further indi-
cated that RCN1 may regulate Treg cell infiltration in ccRCC.

The investigation into the expression of Reticulocalbin 1 (RCN1) across various can-
cer types within the TCGA cohort has revealed significant insights into its role in onco-
genesis and tumor progression. Our analysis showed that RCN1 was upregulated in a 
majority of cancers analyzed, indicating its pervasive role in tumoral environments. Spe-
cifically, an increased expression of RCN1 was observed in 60% of the cancers exam-
ined, including but not limited to BLCA, UCEC, HNSC, and KIRP. This upregulation 
suggests that RCN1 may play a fundamental role in the development and progression 
of these cancers, acting possibly as a facilitator of tumor growth and survival. Moreo-
ver, our examination of the association between RCN1 and various Hallmark pathways 
unveiled a positive correlation with pathways known to enhance tumor aggressiveness, 
such as the inflammatory pathway and epithelial-mesenchymal transition (EMT). The 
correlation with TNFα signaling and other inflammatory response pathways across mul-
tiple cancer types underscores the potential of RCN1 to modulate the tumor microen-
vironment, promoting conditions favorable for cancer progression. Furthermore, the 
impact of RCN1 expression on survival outcomes across 32 cancer types revealed a stark 
correlation between high RCN1 expression and poorer survival outcomes in over seven 
cancer types, including GBM and LUAD. This association highlights the prognostic 
potential of RCN1, suggesting that its expression level could serve as a biomarker for 
survival outcomes in a subset of cancers. The findings from this comprehensive analysis 
shed light on the multifaceted role of RCN1 in cancer biology. These insights necessitate 
further investigation into the mechanistic underpinnings of RCN1’s role in cancer and 
its potential utility in prognostic assessments and therapeutic interventions. Given its 
significant association with both cancer progression and patient prognosis, RCN1 repre-
sents a promising target for the development of novel cancer therapies and management 
strategies.

Conclusion
Our research has developed a prognostic model related to Treg cells for forecasting OS 
in ccRCC, while also investigating the predictive significance of RCN1 in the context of 
ccRCC prognosis. We aim to enrich the existing knowledge on the impact of Treg cells 
on ccRCC’s biology and its prognosis. Furthermore, we propose that RCN1 could serve 
as an innovative biomarker for predicting clinical outcomes in ccRCC patients.
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